All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 37244 by subhendubera201314@gmail.com last updated on 11/Jun/18
sin2(π/11)+sin2(2π/11)+...+sin2(5π/11)=?
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jun/18
sin2a+sin22a+sin23a+sin24a+sin25aa=Π11=1−cos2a2+1−cos4a2+1−cos6a2+1−cos8a2+1−cos10a2=5×12−12(c2a+c4a+c6a+c8a+c10a)whenc2a=cos2aetcs=c2a+c4a+c6a+c8a+c10as×2sina=2sina.(c2a+c4a+c6a+c8a+c10a)s×2sina=2sina.cos2a+2sina.cos4a+2sinacos6a+2sina.cos8a+2sina.cos10anowlook2sina.cos2a=sin3a−sina2sina.cos4a=sin5a−sin3a2sina.cos6a=sin7a−sin5a2sina.cos8a=sin9a−sin7a2sina.cos10a=sin11a−sin9anowaddthem...additionofrightsideis=sin11a−sina=2cos6a.sin5aadditionofleftiss×2sinasos×2sina=2cos6a.sin5as=cos6a.sin5asina52−12(cos6a.sin5asina)=52−14(2cos6a.sin5asina)=52−14(sin11a−sinasina)a=Π11so11a=Πsin11a=sinΠ=0=52−14(0−sinasina)=52+14=10+14=114
Terms of Service
Privacy Policy
Contact: info@tinkutara.com