All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 37271 by abdo.msup.com last updated on 11/Jun/18
findAn=∫12(1+1x+1x2+...+1xn)2dx
Commented by prof Abdo imad last updated on 18/Jun/18
letai=1xiwith0⩽i⩽n⇒(1+1x+1x2+....+1xn)2=(∑i=0nai)2=∑i=0nai2+2∑0⩽i<j⩽nai.aj=∑i=0n1x2i+2∑0⩽i<j⩽n1xi+j⇒An=∫12(∑i=0n1x2i)dx+2∫12∑0⩽i<j⩽n1xi+jdx=∑i=0n∫12x−2idx+2∑0⩽i<j⩽n∫12x−(i+j)dx∑i=0n1−2i+1[x−2i+1]12+2∑0⩽i<j⩽n11−(i+j)[x1−(i+j)]12=−∑i=0n12i−1{2−2i+1−1}−∑0⩽i<j⩽n1i+j−1{21−(i+j)−1}
Commented by math khazana by abdo last updated on 18/Jun/18
An=∑i=0n1−2−2i+12i−1+∑0⩽i<j⩽n1−21−i−ji+j−1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com