Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37279 by abdo.msup.com last updated on 11/Jun/18

cslculate ∫∫_([0,1]^2 )    (x−y)e^(−x−y) dxdy .

$${cslculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−{x}−{y}} {dxdy}\:. \\ $$

Commented by prof Abdo imad last updated on 18/Jun/18

let use the changement  (u,v)→(x,y)=(x−y,x+y)=(ϕ_1 (u,v),ϕ_2 (u,v))  we have 0≤x≤1 and 0≤y≤1 ⇒  −1≤−y≤0 ⇒ −1≤x−y≤1 and  0≤x+y≤2 ⇒ −1≤u≤1 and 0≤v≤2 and  M_j  =  ((((∂ϕ_1 /∂u)             (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                (∂ϕ_2 /∂v))) )  = ((),() )  we have x−y=u and x+y=v ⇒2x=u+v  and 2y = −u +v ⇒ x= (1/2) u +(1/2)v and  y =−(1/2)u +(1/2)v  ⇒  M_j  = ((((1/2)            (1/2))),((−(1/2)          (1/2))) )     and det(M_j )= (1/2)  ∫∫_([0,1]^2 )    (x−y)e^(−(x+y)) dxdy  =∫∫_(−1≤u≤1 and  0≤v≤2)  u e^(−v)  (1/2)du dv  =(1/2) ∫_(−1) ^1  u du.∫_0 ^2  e^(−v)  dv  =(1/2)[ (u^2 /2)]_(−1) ^1 .[ −e^(−v) ]_0 ^2   =0

$${let}\:{use}\:{the}\:{changement} \\ $$$$\left({u},{v}\right)\rightarrow\left({x},{y}\right)=\left({x}−{y},{x}+{y}\right)=\left(\varphi_{\mathrm{1}} \left({u},{v}\right),\varphi_{\mathrm{2}} \left({u},{v}\right)\right) \\ $$$${we}\:{have}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}\:\Rightarrow \\ $$$$−\mathrm{1}\leqslant−{y}\leqslant\mathrm{0}\:\Rightarrow\:−\mathrm{1}\leqslant{x}−{y}\leqslant\mathrm{1}\:{and} \\ $$$$\mathrm{0}\leqslant{x}+{y}\leqslant\mathrm{2}\:\Rightarrow\:−\mathrm{1}\leqslant{u}\leqslant\mathrm{1}\:{and}\:\mathrm{0}\leqslant{v}\leqslant\mathrm{2}\:{and} \\ $$$${M}_{{j}} \:=\:\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial{v}}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial{v}}}\end{pmatrix} \\ $$$$=\begin{pmatrix}{}\\{}\end{pmatrix} \\ $$$${we}\:{have}\:{x}−{y}={u}\:{and}\:{x}+{y}={v}\:\Rightarrow\mathrm{2}{x}={u}+{v} \\ $$$${and}\:\mathrm{2}{y}\:=\:−{u}\:+{v}\:\Rightarrow\:{x}=\:\frac{\mathrm{1}}{\mathrm{2}}\:{u}\:+\frac{\mathrm{1}}{\mathrm{2}}{v}\:{and} \\ $$$${y}\:=−\frac{\mathrm{1}}{\mathrm{2}}{u}\:+\frac{\mathrm{1}}{\mathrm{2}}{v}\:\:\Rightarrow \\ $$$${M}_{{j}} \:=\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\end{pmatrix}\:\:\:\:\:{and}\:{det}\left({M}_{{j}} \right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−\left({x}+{y}\right)} {dxdy} \\ $$$$=\int\int_{−\mathrm{1}\leqslant{u}\leqslant\mathrm{1}\:{and}\:\:\mathrm{0}\leqslant{v}\leqslant\mathrm{2}} \:{u}\:{e}^{−{v}} \:\frac{\mathrm{1}}{\mathrm{2}}{du}\:{dv} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{u}\:{du}.\int_{\mathrm{0}} ^{\mathrm{2}} \:{e}^{−{v}} \:{dv} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{−\mathrm{1}} ^{\mathrm{1}} .\left[\:−{e}^{−{v}} \right]_{\mathrm{0}} ^{\mathrm{2}} \:\:=\mathrm{0} \\ $$

Answered by ajfour last updated on 11/Jun/18

A=∫_0 ^(  1) (1/e^y )[∫_0 ^(  1) xe^(−x) dx−y∫_0 ^(  1) e^(−x) dx]dy  =∫_9 ^(  1) (1/e^y )[−(1+x)e^(−x) +ye^(−x) ]∣_0 ^1 dy  =∫_0 ^(  1) (1/e^y )[((y/e)−(2/e))−(y−1)]dy  =∫_0 ^(  1) [((1/e)−1)y+(1−(2/e))]e^(−y) dy  ={−[((1/e)−1)y+(1−(2/e))]e^(−y)             −((1/e)−1)e^(−y) }∣_0 ^1   =−(1/e)[(1/e)−1+1−(2/e)]+1−(2/e)             −(1/e)((1/e)−1)+(1/e)−1  = 0 .

$${A}=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{\mathrm{1}}{{e}^{{y}} }\left[\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {xe}^{−{x}} {dx}−{y}\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {e}^{−{x}} {dx}\right]{dy} \\ $$$$=\int_{\mathrm{9}} ^{\:\:\mathrm{1}} \frac{\mathrm{1}}{{e}^{{y}} }\left[−\left(\mathrm{1}+{x}\right){e}^{−{x}} +{ye}^{−{x}} \right]\mid_{\mathrm{0}} ^{\mathrm{1}} {dy} \\ $$$$=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{\mathrm{1}}{{e}^{{y}} }\left[\left(\frac{{y}}{{e}}−\frac{\mathrm{2}}{{e}}\right)−\left({y}−\mathrm{1}\right)\right]{dy} \\ $$$$=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left[\left(\frac{\mathrm{1}}{{e}}−\mathrm{1}\right){y}+\left(\mathrm{1}−\frac{\mathrm{2}}{{e}}\right)\right]{e}^{−{y}} {dy} \\ $$$$=\left\{−\left[\left(\frac{\mathrm{1}}{{e}}−\mathrm{1}\right){y}+\left(\mathrm{1}−\frac{\mathrm{2}}{{e}}\right)\right]{e}^{−{y}} \right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:−\left(\frac{\mathrm{1}}{{e}}−\mathrm{1}\right){e}^{−{y}} \right\}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{{e}}\left[\frac{\mathrm{1}}{{e}}−\mathrm{1}+\mathrm{1}−\frac{\mathrm{2}}{{e}}\right]+\mathrm{1}−\frac{\mathrm{2}}{{e}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{{e}}\left(\frac{\mathrm{1}}{{e}}−\mathrm{1}\right)+\frac{\mathrm{1}}{{e}}−\mathrm{1} \\ $$$$=\:\mathrm{0}\:. \\ $$

Commented by prof Abdo imad last updated on 18/Jun/18

your answer is correct sir Ajfour thanks.

$${your}\:{answer}\:{is}\:{correct}\:{sir}\:{Ajfour}\:{thanks}. \\ $$

Commented by ajfour last updated on 18/Jun/18

thanks for confirming my answer  Sir; makes me happy.

$${thanks}\:{for}\:{confirming}\:{my}\:{answer} \\ $$$${Sir};\:{makes}\:{me}\:{happy}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com