Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37317 by rahul 19 last updated on 11/Jun/18

∫ ((acos x+b)/((a+bcos x)^2 ))dx = ?

acosx+b(a+bcosx)2dx=?

Commented by math khazana by abdo last updated on 12/Jun/18

changement tan((x/2)) = t give   I = ∫  ((a((1−t^2 )/(1+t^2 )) +b)/((a +b((1−t^2 )/(1+t^2 )))^2 ))  ((2dt)/(1+t^2 ))  =2 ∫   ((a(1−t^2 )  +b +bt^2 )/((1+t^2 )^2 (((a+at^2  +b−bt^2 )^2 )/((1+t^2 )^2 )))) dt  = 2 ∫      ((a+b +(b−a)t^2 )/({a+b  +(a−b)t^2 }^2 )) dt  case 1  a>b    I  =2  ∫  (((a+b){ 1−(a−b)t^2 })/((a+b)^2 {  1+((a−b)/(a+b))t^2 }^2 )) dt  =(2/(a+b)) ∫     ((1−((a−b)/(a+b))t^2 )/({1 +((a−b)/(a+b))t^2 }^2 ))dt  changement  (√((a−b)/(a+b)))t =x give  I  = (2/(a+b)) ∫   ((1−x^2 )/({1+x^2 }^2 )) (√((a+b)/(a−b))) dx  = (2/(√(a^2  −b^2 ))) ∫    ((1−x^2 )/((1+x^2 )^2 )) dx  but  ∫  ((1−x^2 )/((1+x^2 )^2 ))dx = ∫  ((1+x^2  −2x^2 )/((1+x^2 )^2 ))dx  = ∫    (dx/(1+x^2 ))   −∫   ((2x^2 )/((1+x^2 )^2 ))dx  =arctanx  −∫   ((2x^2 )/((1+x^2 )^2 ))dx  by parts  u^′     = ((−2x)/((1+x^2 )^2 )) and  u =x  ∫    ((−2x)/((1+x^2 )^2 )) x dx = (1/(1+x^2 )) x  −∫  (1/(1+x^2 )) dx  =(x/(1+x^2 ))  −arctan(x) ⇒    I  = (2/(√(a^2  −b^2 ))){  arctan(x)  +(x/(1+x^2 )) −arctan(x)} +c   I =  ((2x)/((√(a^2  −b^2 ))(1+x^2 )))

changementtan(x2)=tgiveI=a1t21+t2+b(a+b1t21+t2)22dt1+t2=2a(1t2)+b+bt2(1+t2)2(a+at2+bbt2)2(1+t2)2dt=2a+b+(ba)t2{a+b+(ab)t2}2dtcase1a>bI=2(a+b){1(ab)t2}(a+b)2{1+aba+bt2}2dt=2a+b1aba+bt2{1+aba+bt2}2dtchangementaba+bt=xgiveI=2a+b1x2{1+x2}2a+babdx=2a2b21x2(1+x2)2dxbut1x2(1+x2)2dx=1+x22x2(1+x2)2dx=dx1+x22x2(1+x2)2dx=arctanx2x2(1+x2)2dxbypartsu=2x(1+x2)2andu=x2x(1+x2)2xdx=11+x2x11+x2dx=x1+x2arctan(x)I=2a2b2{arctan(x)+x1+x2arctan(x)}+cI=2xa2b2(1+x2)

Commented by math khazana by abdo last updated on 12/Jun/18

case 2  a<b  we get   I = (2/(a+b)) ∫  ((1 +((b−a)/(b+a))t^2 )/({1−((b−a)/(b+a))t^2 }^2 )) dt  and changement  (√((b−a)/(b+a)))t =x give   I = (2/(a+b)) (√((b+a)/(b−a))) ∫   ((1+x^2 )/((1−x^2 )^2 ))dx  = (2/(√(b^2  −a^2 ))) ∫     ((1+x^2 )/((1−x^2 )^2 )) dx  but  ∫     ((1+x^2 )/((1−x^2 )^2 )) dx = ∫ ((1−x^2  +2x^2 )/((1−x^2 )^2 )) dx  = ∫    (dx/(1−x^2 ))   +  ∫   ((2x)/((1−x^2 )^2 )) dx  =ln∣((1+x)/(1−x))∣  + ∫  ((2x)/((1−x^2 )^2 )) dx  by parts  u^′   = ((2x)/((1−x^2 )^2 ))  and v =x ⇒  ∫    ((2x)/((1−x^2 )^2 )) dx =  (1/(1−x^2 )) x − ∫  (1/(1−x^2 )) dx  = (x/(1−x^2 ))   −ln∣((1+x)/(1−x))∣ ⇒  I =  (2/(√(b^2  −a^2 ))){  ln∣((1+x)/(1−x))∣  +(x/(1−x^2 )) −ln∣((1+x)/(1−x))∣  I = ((2x)/((√(b^2  −a^2 ))(1−x^2 )))  +c

case2a<bwegetI=2a+b1+bab+at2{1bab+at2}2dtandchangementbab+at=xgiveI=2a+bb+aba1+x2(1x2)2dx=2b2a21+x2(1x2)2dxbut1+x2(1x2)2dx=1x2+2x2(1x2)2dx=dx1x2+2x(1x2)2dx=ln1+x1x+2x(1x2)2dxbypartsu=2x(1x2)2andv=x2x(1x2)2dx=11x2x11x2dx=x1x2ln1+x1xI=2b2a2{ln1+x1x+x1x2ln1+x1xI=2xb2a2(1x2)+c

Commented by math khazana by abdo last updated on 12/Jun/18

I = ((2x)/((√(a^2 −b^2 ))(1+x^2 )))  +c

I=2xa2b2(1+x2)+c

Commented by math khazana by abdo last updated on 12/Jun/18

x =(√((a−b)/(a+b))) tan((x/2)) at case 1 and x =(√((b−a)/(b+a))) tan((x/2))  at case 2 .

x=aba+btan(x2)atcase1andx=bab+atan(x2)atcase2.

Answered by behi83417@gmail.com last updated on 12/Jun/18

tg(x/2)=t⇒(1+t^2 )dx=2dt,cosx=((1−t^2 )/(1+t^2 ))  ⇒I=∫((a((1−t^2 )/(1+t^2 ))+b)/((a+b((1−t^2 )/(1+t^2 )))^2 )).((2dt)/(1+t^2 ))=  =∫((a+b−(a−b)t^2 )/((a+b+(a−b)t^2 )^2 ))dt=∫((m−nt^2 )/((m+nt^2 )^2 ))dt=  =(m/n^2 )∫(dt/(((m/n)+t^2 )^2 ))−(1/n)∫(t^2 /(((m/n)+t^2 )^2 ))dt=AI_1 +BI_2   1)I_1 =∫(dt/(((m/n)+t^2 )^2 ))=(n/m)∫(((m/n)+t^2 −t^2 )/(((m/n)+t^2 )^2 ))dt=  =(n/m)[∫(dt/(((m/n)+t^2 )))−∫(t^2 /(((m/n)+t^2 )^2 ))dt]=  =(n/m)[(√(n/m)).tg^(−1) ((t/(√(m/n))))+nI_2 ]  I_2 =∫(t^2 /(((m/n)+t^2 )^2 ))dt=−(t/(2(t^2 +(m/n))))+((tg^(−1) (t/(√(m/n))))/(2(√(m/n))))  ⇒I=(m/n^2 ).I_1 −(1/n).I_2 =(m/n^2 ).(n/m)((√(n/m)).tg^(−1) ((√(n/m)).t)−  −((nt)/(2(t^2 +(m/n))))+(1/2)n(√(n/m))tg^(−1) ((√(n/m))t))−  −(1/n)(−(t/(2(t^2 +(m/n))))+(1/2)(√(n/m)).tg^(−1) ((√(n/m))t))=  =(1/(√(mn)))tg^(−1) ((√(n/m))t)−(t/(2(t^2 +(m/n))))+(1/2)(√(n/m))tg^(−1) ((√(n/m))t)−  −(t/(2n(t^2 +(m/n))))+(1/(2(√(mn))))tg^(−1) ((√(n/m))t)=  =((3+n)/(2(√(mn))))tg^(−1) ((√(n/m))t)−((n+1)/n).(t/(t^2 +(m/n)))+C=  =((3+a−b)/(2(√(a^2 −b^2 )))).tg^(−1) ((√((a−b)/(a+b))).tg(x/2))−  −(a−b+1).((tg(x/2))/((a−b)tg^2 (x/2)+(a+b))) .■

tgx2=t(1+t2)dx=2dt,cosx=1t21+t2I=a1t21+t2+b(a+b1t21+t2)2.2dt1+t2==a+b(ab)t2(a+b+(ab)t2)2dt=mnt2(m+nt2)2dt==mn2dt(mn+t2)21nt2(mn+t2)2dt=AI1+BI21)I1=dt(mn+t2)2=nmmn+t2t2(mn+t2)2dt==nm[dt(mn+t2)t2(mn+t2)2dt]==nm[nm.tg1(tmn)+nI2]I2=t2(mn+t2)2dt=t2(t2+mn)+tg1tmn2mnI=mn2.I11n.I2=mn2.nm(nm.tg1(nm.t)nt2(t2+mn)+12nnmtg1(nmt))1n(t2(t2+mn)+12nm.tg1(nmt))==1mntg1(nmt)t2(t2+mn)+12nmtg1(nmt)t2n(t2+mn)+12mntg1(nmt)==3+n2mntg1(nmt)n+1n.tt2+mn+C==3+ab2a2b2.tg1(aba+b.tgx2)(ab+1).tgx2(ab)tg2x2+(a+b).

Answered by rahul 19 last updated on 13/Jun/18

Guys i gave this problem just to realise  that a short trick exists in this form.  Just multiplying and dividing by  cosec^2 x will suffice.

Guysigavethisproblemjusttorealisethatashorttrickexistsinthisform.Justmultiplyinganddividingbycosec2xwillsuffice.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com