Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37333 by math khazana by abdo last updated on 12/Jun/18

let f(x)=Σ_(n=1) ^∞    ((sin(nx))/n^3 )  1)study the convergence of this serie  2)prove that  ∫_0 ^π f(x)dx=2 Σ_(n=1) ^∞   (1/((2n−1)^4 ))  3)prove that ∀x∈ ∈R  f^′ (x)=Σ_(n=1) ^∞   ((cos(nx))/n^2 )  4) prove that ∫_0 ^(π/2) ( Σ_(n≥1) ((cos(nx))/n^2 ))=Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 ))

$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall{x}\in\:\in{R}\:\:{f}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by prof Abdo imad last updated on 17/Jun/18

1) the uniform convergence of this serie is  assured because ∀x∈R ∣((sin(nx))/n^3 )∣≤(1/n^3 ) and  Σ (1/n^3 ) is comvergent  2) ∫_0 ^π  f(x)dx= ∫_0 ^π Σ_(n=1) ^∞ ((sin(nx))/n^3 )dx  =Σ_(n=1) ^∞   (1/n^3 ) ∫_0 ^π   sin(nx)dx but  ∫_0 ^π  sin(nx)dx= [−(1/n)cos(nx)]_0 ^π =(1/n)(1−(−1)^n )  ⇒∫_0 ^π  f(x)dx^  =Σ_(n=1) ^∞   (1/n^4 )(1−(−1)^n )  =2 Σ_(n=0) ^∞    (1/((2n+1)^4 )) =_(n+1=p)  2Σ_(p=1) ^∞   (1/((2p−1)^4 ))

$$\left.\mathrm{1}\right)\:{the}\:{uniform}\:{convergence}\:{of}\:{this}\:{serie}\:{is} \\ $$$${assured}\:{because}\:\forall{x}\in{R}\:\mid\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\mid\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{and} \\ $$$$\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{is}\:{comvergent} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){dx}=\:\int_{\mathrm{0}} ^{\pi} \sum_{{n}=\mathrm{1}} ^{\infty} \frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }{dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\pi} \:\:{sin}\left({nx}\right){dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{sin}\left({nx}\right){dx}=\:\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} =\frac{\mathrm{1}}{{n}}\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){d}\overset{} {{x}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }\:=_{{n}+\mathrm{1}={p}} \:\mathrm{2}\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Commented by prof Abdo imad last updated on 17/Jun/18

3)let f_n (x)= ((sin(nx))/n^3 )  we have Σ f_n c.unif.  and Σ f_n ^′   conv.unif.  ⇒f^′ (x)=Σ f_n ^′ (x)  =Σ_(n=1) ^∞   ((ncos(nx))/n^3 ) =Σ_(n=1) ^∞  ((cos(nx))/n^2 )  4) due to uniform conv. we have also  ∫_0 ^(π/2)   (Σ_(n=1) ^∞  ((cos(nx))/n^2 ))=Σ_(n=1) ^∞  (1/n^2 )∫_0 ^(π/2) cos(nx)dx  =Σ_(n=1) ^∞  (1/n^2 )[(1/n)sin(nx)]_0 ^(π/2)   =Σ_(n=1) ^∞   (1/n^3 )sin(n(π/2))=Σ_(n=0) ^∞  (1/((2n+1)^3 ))sin((2n+1)(π/2))  =Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^3 )) .

$$\left.\mathrm{3}\right){let}\:{f}_{{n}} \left({x}\right)=\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\:\:{we}\:{have}\:\Sigma\:{f}_{{n}} {c}.{unif}. \\ $$$${and}\:\Sigma\:{f}_{{n}} ^{'} \:\:{conv}.{unif}.\:\:\Rightarrow{f}^{'} \left({x}\right)=\Sigma\:{f}_{{n}} ^{'} \left({x}\right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{ncos}\left({nx}\right)}{{n}^{\mathrm{3}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{due}\:{to}\:{uniform}\:{conv}.\:{we}\:{have}\:{also} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({nx}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[\frac{\mathrm{1}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }{sin}\left({n}\frac{\pi}{\mathrm{2}}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }{sin}\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com