All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 37339 by math khazana by abdo last updated on 12/Jun/18
findthevalueof∑n=1∞2n+11+23+33+...+n3
Commented by math khazana by abdo last updated on 13/Jun/18
weknowthat1+23+33+....+n3=n2(n+1)24⇒2n+11+23+33+...+n3=4(2n+1)n2(n+1)2letfindaandfromR/2n+1n2(n+1)2=an2+b(n+1)2=F(n)a=limn→0n2F(n)=1b=limn→−1(n+1)2F(n)=−1⇒42n+1n2(n+1)2=4{1n2−1(n+1)2}wehaveS=limn→+∞Sn/Sn=∑k=1n2k+11+23+33+...+k3Sn=4∑k=1n1k2−4∑k=1n1(k+1)2butSn=4ξn(2)−4∑k=2n+11k2=4ξn(2)−4{ξn+1(2)−1}4ξn(2)−4ξn+1(2)+4limn→+∞ξn(2)=∑k=1∞1k2=π26limn→+∞ξn+1(2)=∑k=1∞1k2=π26⇒limn→∞Sn=4soS=4letremindthatξn(x)=∑k=1n1kx.(x>1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com