Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37343 by math khazana by abdo last updated on 12/Jun/18

let f(x) = ∫_0 ^1 ln(1+xt^2 )dt  with ∣x∣<1  1) find f(x)  2) calculate ∫_0 ^1 ln(2+t^2 )dt .

letf(x)=01ln(1+xt2)dtwithx∣<1 1)findf(x) 2)calculate01ln(2+t2)dt.

Commented bymath khazana by abdo last updated on 15/Jun/18

if −1<x<0  we get   f(x) = (1/x) −(1/x) ∫_0 ^1    (dt/(1−(−x)t^2 ))  and chanvement  t(√(−x))=u give  f^′ (x) = (1/x) −(1/x) ∫_0 ^(√(−x))      (1/(1−u^2 )) (du/(√(−x)))  =(1/x) −(1/(x(√(−x)))) ∫_0 ^(√(−x))   (du/(1−u^2 ))  =(1/x) −(1/(2x(√(−x)))) ∫_0 ^(√(−x))   { (1/(1−u )) +(1/(1+u))}du  =(1/x) −(1/(2x(√(−x)))) [ln∣((1+u)/(1−u))∣]_0 ^(√(−x))   = (1/x) −(1/(2x(√(−x)))) ln∣ ((1+(√(−x)))/(1−(√(−x)))) ∣ ⇒  f(x) = ∫_(−1) ^x   (dt/t)  −∫_(−1) ^x  (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt +c  c =f(−1) = ∫_0 ^1 ln(1−t^2 )dt ⇒  f(x)=ln(−x) −∫_(−1) ^x   (1/(2t(√(−t))))ln∣ ((1+(√(−t)))/(1−(√(−t))))∣ dt  + ∫_0 ^1 ln(1−t^2 )dt . with−1<x<0 ....

if1<x<0weget f(x)=1x1x01dt1(x)t2andchanvement tx=ugive f(x)=1x1x0x11u2dux =1x1xx0xdu1u2 =1x12xx0x{11u+11+u}du =1x12xx[ln1+u1u]0x =1x12xxln1+x1x f(x)=1xdtt1x12ttln1+t1tdt+c c=f(1)=01ln(1t2)dt f(x)=ln(x)1x12ttln1+t1tdt +01ln(1t2)dt.with1<x<0....

Commented bymath khazana by abdo last updated on 15/Jun/18

1) we have f^′ (x)^  = ∫_0 ^1   (t^2 /(1+xt^2 ))dt so if x≠0  f^′ (x)=(1/x) ∫_0 ^1  ((xt^2  +1−1)/(1+xt^2 ))dt =(1/x) −(1/x) ∫_0 ^1    (dt/(1+xt^2 )) for0<x<1  changement t(√x)=u give  ∫_0 ^1    (dt/(1+xt^2 )) = ∫_0 ^(√x)     (du/(1+u^2 )) (du/(√x)) =(1/(√x)) arctan((√x))⇒  f^′ (x) = (1/x) −((arctan((√x)))/(x(√x)))  ⇒  f(x) = ∫_1 ^x  (dt/t)  −∫_1 ^x    ((arctan((√t)))/(t(√t))) dt+c  c=f(1) =∫_0 ^1 ln(1+t^2 )dt    chang.(√t)=u give  ∫_1 ^(x  )   ((arctan((√t)))/(t(√t))) dt = ∫_1 ^(√x)    ((arctan(u))/(u^2 .u)) 2u du  =2 ∫_1 ^(√x)   ((arctan(u))/u^2 ) du  =2{  [−(1/u) arctan(u)]_1 ^(√x)   −∫_1 ^(√x) −(1/u) (1/(1+u^2 ))du}  =2{  (π/4) −((arctan((√x)))/(√x)) } +2 ∫_1 ^(√x)    (du/(u(1+u^2 )))  =(π/2)  −((2arctan((√x)))/(√x)) +2 ∫_1 ^(√x)  ((1/u) −(u/(1+u^2 )))du  =(π/2) −((2 arctan((√x)))/(√x)) +2[ln((u/(√(1+u^2 ))))]_1 ^(√x)   =(π/2) −2((arctan((√x)))/(√x)) +2 ln(((√x)/(√(1+x)))) ⇒  f(x)=ln(x) −(π/2)  +((2 arctan((√x)))/(√x)) −2ln(((√x)/(√(1+x))))  +∫_0 ^1  ln(1+t^2 )dt  f(x)=ln(x) −(π/2) +((2arctan((√x)))/(√x)) −lnx +ln(1+x)  +∫_0 ^1   ln(1+t^2 )dt   . and by parts  ∫_0 ^1  ln(1+t^2 )dt = [t ln(1+t^2 )]_0 ^1  −∫_0 ^1   t ((2t)/(1+t^2 )) dt  =ln(2) −2  ∫_0 ^1  ((t^2  +1−1)/(1+t^2 )) dt  =ln(2) −2  +2 ∫_0 ^1   (dt/(1+t^2 )) =ln(2)−2  +(π/2) ⇒  f(x)= ((2 artan((√x)))/(√x)) +ln(1+x) +ln(2)−2  with 0<x<1

1)wehavef(x)=01t21+xt2dtsoifx0 f(x)=1x01xt2+111+xt2dt=1x1x01dt1+xt2for0<x<1 changementtx=ugive 01dt1+xt2=0xdu1+u2dux=1xarctan(x) f(x)=1xarctan(x)xx f(x)=1xdtt1xarctan(t)ttdt+c c=f(1)=01ln(1+t2)dtchang.t=ugive 1xarctan(t)ttdt=1xarctan(u)u2.u2udu =21xarctan(u)u2du =2{[1uarctan(u)]1x1x1u11+u2du} =2{π4arctan(x)x}+21xduu(1+u2) =π22arctan(x)x+21x(1uu1+u2)du =π22arctan(x)x+2[ln(u1+u2)]1x =π22arctan(x)x+2ln(x1+x) f(x)=ln(x)π2+2arctan(x)x2ln(x1+x) +01ln(1+t2)dt f(x)=ln(x)π2+2arctan(x)xlnx+ln(1+x) +01ln(1+t2)dt.andbyparts 01ln(1+t2)dt=[tln(1+t2)]0101t2t1+t2dt =ln(2)201t2+111+t2dt =ln(2)2+201dt1+t2=ln(2)2+π2 f(x)=2artan(x)x+ln(1+x)+ln(2)2 with0<x<1

Commented bymath khazana by abdo last updated on 15/Jun/18

2) ∫_0 ^1 ln(2+t^2 )dt = ∫_0 ^1 ln(2)dt +∫_0 ^1 ln(1+(1/2)t^2 )dt  =ln(2) +f((1/2))  =ln(2) +((2 arctan((1/(√2))))/(1/(√2))) +ln((3/2)) +ln(2) −2  =ln(2) +ln(3) +2(√2)( (π/2) −arctan((√2))) −2  =π(√2) −2(√2) arctan((√2)) +ln(6) −2 .

2)01ln(2+t2)dt=01ln(2)dt+01ln(1+12t2)dt =ln(2)+f(12) =ln(2)+2arctan(12)12+ln(32)+ln(2)2 =ln(2)+ln(3)+22(π2arctan(2))2 =π222arctan(2)+ln(6)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com