Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37347 by math khazana by abdo last updated on 12/Jun/18

let r =(√(p^2  +q^2 ))   p and q from R  and p>0  q>0  1)prove that  ∫_0 ^(+∞)   e^(−px)  ((cos(px))/(√x))dx=((√π)/r)(√((r+p)/2))  2) ∫_0 ^∞   e^(−px)   ((sin(qx))/(√x))dx =((√π)/r) (√((r−p)/2))

letr=p2+q2pandqfromRandp>0q>0 1)provethat0+epxcos(px)xdx=πrr+p2 2)0epxsin(qx)xdx=πrrp2

Commented bymath khazana by abdo last updated on 12/Jun/18

let I = ∫_0 ^∞   e^(−px)  ((cos(qx))/(√x)) dx changement (√x)=t  give I = ∫_0 ^∞   e^(−pt^2 )  ((cos(qt^2 ))/t) 2tdt  = 2 ∫_0 ^∞    e^(−pt^2 ) cos(qt^2 )dt=∫_(−∞) ^(+∞)   e^(−pt^2 )  cos(qt^2 )dt  =Re( ∫_(−∞) ^(+∞)  e^(−pt^2 )  e^(iqt^2 ) dt)  but   ∫_(−∞) ^(+∞)    e^(−pt^2  +iqt^2 ) dt  = ∫_(−∞) ^(+∞)   e^(−(p−iq)t^2 ) dt  =_((√(p−iq))t=u)   ∫_(−∞) ^(+∞)   e^(−u^2 )   (du/(√(p−iq)))  = (1/(√(p−iq)))(√π)      but  p−iq =(√(p^2 +q^2 )){(p/(√(p^2 +q^2 ))) −i(q/(√(p^2  +q^2 )))}  =r{ (p/r) −i(q/r)}=r e^(iθ)  ⇒ cosθ = (p/r) and  sinθ =((−q)/r) ⇒ tanθ= −(q/p) ⇒θ =−arctan((q/p))⇒  p−iq =r e^(−iarctan((q/p)))  and (√(p−iq)) =(√r)e^(−(i/2)arctan((q/(p)))))   ⇒ ∫_(−∞) ^(+∞)   e^(−(p−iq)^ t^2 ) dt = ((√π)/(√r)) e^((i/2) arctan((q/p)))   ⇒ I  =((√π)/(√r)) cos(((arctan((q/p)))/2)) but  cos((1/2)arctan((q/p)))= (√((1+cos(arctan((q/p))))/2))  =(1/(√2))(√( 1+(1/(√(1+(q^2 /p^2 ))))))  =(1/(√2))(√(1+(p/(√(p^2 +q^2 )))))  =(1/(√2))(√((r+p)/r))  = (1/((√2)(√r)))(√(r+p))  ⇒  I  =((√π)/(√r))  (1/((√2)(√r))) (√(r+p))= ((√π)/r)(√(((r+p)/2) )) .

letI=0epxcos(qx)xdxchangementx=t giveI=0ept2cos(qt2)t2tdt =20ept2cos(qt2)dt=+ept2cos(qt2)dt =Re(+ept2eiqt2dt)but +ept2+iqt2dt=+e(piq)t2dt =piqt=u+eu2dupiq =1piqπbutpiq=p2+q2{pp2+q2iqp2+q2} =r{priqr}=reiθcosθ=prand sinθ=qrtanθ=qpθ=arctan(qp) piq=reiarctan(qp)andpiq=rei2arctan(qp)) +e(piq)t2dt=πrei2arctan(qp) I=πrcos(arctan(qp)2)but cos(12arctan(qp))=1+cos(arctan(qp))2 =121+11+q2p2=121+pp2+q2 =12r+pr=12rr+p I=πr12rr+p=πrr+p2.

Commented bymath khazana by abdo last updated on 12/Jun/18

1) the Q is prove that  ∫_0 ^∞    e^(−px)   ((cos(qx))/(√x)) dx = ((√π)/r)(√((r+p)/2))  .

1)theQisprovethat 0epxcos(qx)xdx=πrr+p2.

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jun/18

A=∫_0 ^∞ e^(−px) .((cosqx)/(√x))dx  B=∫_0 ^∞ e^(−px) ((sinqx)/(√x))dx  A+iB=∫_0 ^∞ e^(−px) .(e^(iqx) /(√x))dx  =∫_0 ^∞ e^(−x(p−iq)) ×x^(−(1/2)) dx  t=(p−iq)x  dt=(p−iq)dx  =(1/(p−iq))∫_0 ^∞ e^(−it) ×((t/(p−iq)))^(−(1/2)) dt  =(1/((p−iq)^(1/2) ))∫_0 ^∞ e^(−it) ×t^(−(1/2)) dt  =((√Π)/((p−iq)^(1/2) ))  p=rcosθ  q=rsinθ  (rcosθ−rsinθ)^(1/2)   =(√r) ×e^(−i(θ/2))   =(√r) ×(cos(θ/2))+i(√r) sin(θ/2)  contd

A=0epx.cosqxxdx B=0epxsinqxxdx A+iB=0epx.eiqxxdx =0ex(piq)×x12dx t=(piq)x dt=(piq)dx =1piq0eit×(tpiq)12dt =1(piq)120eit×t12dt =Π(piq)12 p=rcosθq=rsinθ (rcosθrsinθ)12 =r×eiθ2 =r×(cosθ2)+irsinθ2 contd

Terms of Service

Privacy Policy

Contact: info@tinkutara.com