Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37356 by math khazana by abdo last updated on 12/Jun/18

let  b ∈C  and Re(b) >0 prove that  ∫_(−∞) ^(+∞)    (e^(iax) /(x−ib))dx =2iπ e^(−ab  )    and  ∫_(−∞) ^(+∞)    (e^(iax) /(x+ib)) dx =0

$${let}\:\:{b}\:\in{C}\:\:{and}\:{Re}\left({b}\right)\:>\mathrm{0}\:{prove}\:{that} \\ $$ $$\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iax}} }{{x}−{ib}}{dx}\:=\mathrm{2}{i}\pi\:{e}^{−{ab}\:\:} \:\:\:{and} \\ $$ $$\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iax}} }{{x}+{ib}}\:{dx}\:=\mathrm{0} \\ $$

Commented bymath khazana by abdo last updated on 12/Jun/18

a>0

$${a}>\mathrm{0} \\ $$

Commented bymath khazana by abdo last updated on 13/Jun/18

let ϕ(z) = (e^(iaz) /(z−ib))   so ib is a simple pole of ϕ  with Re(b)>0 ⇒Im(ib)>0 ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,ib)  =2iπ e^(ia(ib)) = 2iπ e^(−ab)   let ψ(z) = (e^(iaz) /(x+ib))  the pole of ψ is −ib  but Im(−ib)<0  so ∫_(−∞) ^(+∞)   ψ(z)dz =0

$${let}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{iaz}} }{{z}−{ib}}\:\:\:{so}\:{ib}\:{is}\:{a}\:{simple}\:{pole}\:{of}\:\varphi \\ $$ $${with}\:{Re}\left({b}\right)>\mathrm{0}\:\Rightarrow{Im}\left({ib}\right)>\mathrm{0}\:\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{ib}\right) \\ $$ $$=\mathrm{2}{i}\pi\:{e}^{{ia}\left({ib}\right)} =\:\mathrm{2}{i}\pi\:{e}^{−{ab}} \\ $$ $${let}\:\psi\left({z}\right)\:=\:\frac{{e}^{{iaz}} }{{x}+{ib}}\:\:{the}\:{pole}\:{of}\:\psi\:{is}\:−{ib}\:\:{but}\:{Im}\left(−{ib}\right)<\mathrm{0} \\ $$ $${so}\:\int_{−\infty} ^{+\infty} \:\:\psi\left({z}\right){dz}\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com