All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 37357 by math khazana by abdo last updated on 12/Jun/18
leta>0bfromCandRe(b)>0 1)calculate∫−∞+∞bcos(ax)x2+b2dx 2)findthevalueof∫−∞+∞xsin(ax)x2+b2dx.
Commented byabdo.msup.com last updated on 13/Jun/18
1)letI=∫−∞+∞bcos(ax)x2+b2dx I=Re(∫−∞+∞beiaxx2+b2dx)letconsider φ(z)=beiazz2+b2 φ(z)=beiax(z−ib)(z+ib)sothepolesofφ areiband−ibwehaveRe(b)>0⇒ Im(ib)>0so ∫−∞+∞φ(z)dz=2iπRes(φ,ib) Res(φ,ib)=limz→ib(z−ib)φ(z) =beia(ib)2ib=e−ab2i⇒ ∫−∞+∞φ(z)dz=2iπe−ab2i=πe−ab⇒ I=πe−ab.
2)letJ=∫−∞+∞xsin(ax)x2+b2dx J=Im(∫−∞+∞xeiaxx2+b2dx)let ψ(z)=zeiazz2+b2thepolesofψare iband−ib ∫−∞+∞ψ(z)dz=2iπRes(ψ,ib) =2iπibeia(ib)2ib=iπe−ab⇒J=πe−ab
Terms of Service
Privacy Policy
Contact: info@tinkutara.com