Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37359 by math khazana by abdo last updated on 12/Jun/18

let   g(x)= ((ln(z))/(1+z^3 ))  give the poles z_i  of g and  calculate Res(g ,z_i )

$${let}\:\:\:{g}\left({x}\right)=\:\frac{{ln}\left({z}\right)}{\mathrm{1}+{z}^{\mathrm{3}} }\:\:{give}\:{the}\:{poles}\:{z}_{{i}} \:{of}\:{g}\:{and} \\ $$$${calculate}\:{Res}\left({g}\:,{z}_{{i}} \right)\: \\ $$$$ \\ $$

Commented by math khazana by abdo last updated on 13/Jun/18

poles of g   1+z^3 =0 ⇔z^3  =e^(iπ)   so if z=re^(iθ)   ⇒r=1 and 3θ =(2k+1)π ⇒θ=(2k+1)(π/3)  the roots are z_k =e^(i(2k+1)(π/3))   with k∈[[0,2]]  z_0 =e^(i(π/3))     , z_1 =−1    ,  z_2 = e^(i((4π)/3))         g(z) = ((ln(z))/((z−z_0 )(z−z_1 )(z−z_2 )))= ((lnz)/((z+1)(z^2 −z+1)))  Res(g,z_1 ) =  ((ln(z_1 ))/(z_1 ^2  −z_1 +1)) = iπ (1/3) =i(π/3)  Res(g,z_0 ) = ((ln(z_0 ))/((z_0 −z_1 )(z_0 −z_2 ))) =i(π/3) (1/((e^(i(π/3))  +1)(e^(i(π/3))  −e^(i((4π)/3)) )))  =i(π/3)  (1/(((3/2) +i((√3)/2))((3/2)+i((√3)/2)  +(1/2) +i((√3)/2))))  =i(π/3)  (1/(((3/2) +i((√3)/2))(2 +i(√3)))) = ((2iπ)/(3(3+i(√3))(2+i(√3))))  Res(g,z_2 ) = ((ln(z_2 ))/((z_2 −z_0 )(z_2 −z_1 )))  =i((4π)/3) (1/((e^(i4(π/3))  −e^(i(π/3)) )(e^(i((4π)/3))  +1)))

$${poles}\:{of}\:{g}\:\:\:\mathrm{1}+{z}^{\mathrm{3}} =\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{3}} \:={e}^{{i}\pi} \:\:{so}\:{if}\:{z}={re}^{{i}\theta} \\ $$$$\Rightarrow{r}=\mathrm{1}\:{and}\:\mathrm{3}\theta\:=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\:\Rightarrow\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{3}} \\ $$$${the}\:{roots}\:{are}\:{z}_{{k}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{3}}} \:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{2}\right]\right] \\ $$$${z}_{\mathrm{0}} ={e}^{{i}\frac{\pi}{\mathrm{3}}} \:\:\:\:,\:{z}_{\mathrm{1}} =−\mathrm{1}\:\:\:\:,\:\:{z}_{\mathrm{2}} =\:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \:\:\:\:\:\: \\ $$$${g}\left({z}\right)\:=\:\frac{{ln}\left({z}\right)}{\left({z}−{z}_{\mathrm{0}} \right)\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}=\:\frac{{lnz}}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} −{z}+\mathrm{1}\right)} \\ $$$${Res}\left({g},{z}_{\mathrm{1}} \right)\:=\:\:\frac{{ln}\left({z}_{\mathrm{1}} \right)}{{z}_{\mathrm{1}} ^{\mathrm{2}} \:−{z}_{\mathrm{1}} +\mathrm{1}}\:=\:{i}\pi\:\frac{\mathrm{1}}{\mathrm{3}}\:={i}\frac{\pi}{\mathrm{3}} \\ $$$${Res}\left({g},{z}_{\mathrm{0}} \right)\:=\:\frac{{ln}\left({z}_{\mathrm{0}} \right)}{\left({z}_{\mathrm{0}} −{z}_{\mathrm{1}} \right)\left({z}_{\mathrm{0}} −{z}_{\mathrm{2}} \right)}\:={i}\frac{\pi}{\mathrm{3}}\:\frac{\mathrm{1}}{\left({e}^{{i}\frac{\pi}{\mathrm{3}}} \:+\mathrm{1}\right)\left({e}^{{i}\frac{\pi}{\mathrm{3}}} \:−{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \right)} \\ $$$$={i}\frac{\pi}{\mathrm{3}}\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \\ $$$$={i}\frac{\pi}{\mathrm{3}}\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left(\mathrm{2}\:+{i}\sqrt{\mathrm{3}}\right)}\:=\:\frac{\mathrm{2}{i}\pi}{\mathrm{3}\left(\mathrm{3}+{i}\sqrt{\mathrm{3}}\right)\left(\mathrm{2}+{i}\sqrt{\mathrm{3}}\right)} \\ $$$${Res}\left({g},{z}_{\mathrm{2}} \right)\:=\:\frac{{ln}\left({z}_{\mathrm{2}} \right)}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{0}} \right)\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$={i}\frac{\mathrm{4}\pi}{\mathrm{3}}\:\frac{\mathrm{1}}{\left({e}^{{i}\mathrm{4}\frac{\pi}{\mathrm{3}}} \:−{e}^{{i}\frac{\pi}{\mathrm{3}}} \right)\left({e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \:+\mathrm{1}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com