Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37364 by math khazana by abdo last updated on 12/Jun/18

calculate  L{ ((x^(n−1)  e^(−ax) )/((n−1)!))} then conclude  L^(−1) {  (1/((a+x)^n ))}

$${calculate}\:\:{L}\left\{\:\frac{{x}^{{n}−\mathrm{1}} \:{e}^{−{ax}} }{\left({n}−\mathrm{1}\right)!}\right\}\:{then}\:{conclude} \\ $$$${L}^{−\mathrm{1}} \left\{\:\:\frac{\mathrm{1}}{\left({a}+{x}\right)^{{n}} }\right\} \\ $$

Commented by prof Abdo imad last updated on 15/Jun/18

we have L{((x^(n−1)  e^(−ax) )/((n−1)!))}=∫_0 ^∞    ((t^(n−1)  e^(−at) )/((n−1)!)) e^(−xt)  dt  =(1/((n−1)!))∫_0 ^∞    t^(n−1)  e^(−(a+x)t) dt  =_((a+x)t=u)    (1/((n−1)!))∫_0 ^∞    (u^(n−1) /((a+x)^(n−1) )) e^(−u)  (du/(a+x))  = (1/((n−1)!(a+x)^n )) ∫_0 ^∞     u^(n−1)  e^(−u)  du  but  A_n  =∫_0 ^∞  u^(n−1)  e^(−u)  du =[(1/n)u^n  e^(−u) ]_0 ^∞   +∫_0 ^∞   (1/n) u^n  e^(−u)  du = (1/n) A_(n+1)  ⇒  A_(n+1) =n A_n   ⇒ Π_(k=1) ^(n−1)  A_(k+1) =(n−1)! Π_(k=1) ^(n−1)  A_k   ⇒ A_n  = (n−1)! A_1 =(n−1)! ⇒  L{ ((x^(n−1)  e^(−ax) )/((n−1)!))} =  (1/((a+x)^n )) ⇒  L^(−1)  ((1/((x+a)^n ))) = ((x^(n−1)  e^(−ax) )/((n−1)!)) .

$${we}\:{have}\:{L}\left\{\frac{{x}^{{n}−\mathrm{1}} \:{e}^{−{ax}} }{\left({n}−\mathrm{1}\right)!}\right\}=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{n}−\mathrm{1}} \:{e}^{−{at}} }{\left({n}−\mathrm{1}\right)!}\:{e}^{−{xt}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \:\:\:{t}^{{n}−\mathrm{1}} \:{e}^{−\left({a}+{x}\right){t}} {dt} \\ $$$$=_{\left({a}+{x}\right){t}={u}} \:\:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{u}^{{n}−\mathrm{1}} }{\left({a}+{x}\right)^{{n}−\mathrm{1}} }\:{e}^{−{u}} \:\frac{{du}}{{a}+{x}} \\ $$$$=\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!\left({a}+{x}\right)^{{n}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{u}^{{n}−\mathrm{1}} \:{e}^{−{u}} \:{du}\:\:{but} \\ $$$${A}_{{n}} \:=\int_{\mathrm{0}} ^{\infty} \:{u}^{{n}−\mathrm{1}} \:{e}^{−{u}} \:{du}\:=\left[\frac{\mathrm{1}}{{n}}{u}^{{n}} \:{e}^{−{u}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$+\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}}\:{u}^{{n}} \:{e}^{−{u}} \:{du}\:=\:\frac{\mathrm{1}}{{n}}\:{A}_{{n}+\mathrm{1}} \:\Rightarrow \\ $$$${A}_{{n}+\mathrm{1}} ={n}\:{A}_{{n}} \:\:\Rightarrow\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{A}_{{k}+\mathrm{1}} =\left({n}−\mathrm{1}\right)!\:\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{A}_{{k}} \\ $$$$\Rightarrow\:{A}_{{n}} \:=\:\left({n}−\mathrm{1}\right)!\:{A}_{\mathrm{1}} =\left({n}−\mathrm{1}\right)!\:\Rightarrow \\ $$$${L}\left\{\:\frac{{x}^{{n}−\mathrm{1}} \:{e}^{−{ax}} }{\left({n}−\mathrm{1}\right)!}\right\}\:=\:\:\frac{\mathrm{1}}{\left({a}+{x}\right)^{{n}} }\:\Rightarrow \\ $$$${L}^{−\mathrm{1}} \:\left(\frac{\mathrm{1}}{\left({x}+{a}\right)^{{n}} }\right)\:=\:\frac{{x}^{{n}−\mathrm{1}} \:{e}^{−{ax}} }{\left({n}−\mathrm{1}\right)!}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com