All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 37425 by MJS last updated on 13/Jun/18
∫x5−3x4−23x3+51x2+94x−1208x342+x−x2dx=?
Answered by ajfour last updated on 13/Jun/18
d(42+x−x2)=(1−2x)dxI=18∫x2−3x−2342+x−x2dx+18∫51x2+94x−120x342+x−x2dx8I=I1+I2forsecondintegralletx=1tI2=∫51x2+94x−120x342+x−x2dx=−∫t3(51t2+94t−120)dtt242+1t−1t2=∫120t2−94t−5142t2+t−1dt120t2−94t−51=C(42t2+t−1)+D(84t+1)similarlyforI1:x2−3x−23=A(42+x−x2)+B(1−2x)8I=A∫42+x−x2dx+B∫(1−2x)dx42+x−x2+C∫42t2+t−1dt+D∫(84t+1)dt42t2+t−1........
Terms of Service
Privacy Policy
Contact: info@tinkutara.com