Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37432 by MJS last updated on 13/Jun/18

∫(dα/((1/2)tan α +2cot (α/2)))=?  ∫(dβ/(2tan (β/2) +(1/2)cot β))=?

dα12tanα+2cotα2=?dβ2tanβ2+12cotβ=?

Answered by ajfour last updated on 13/Jun/18

∫((2sin αcos αdα)/(sin^2 α+4cos^2 α))=∫((sin 2αdα)/(1+(3/2)(1+cos 2α)))  =(1/3)∫ ((3sin 2α d(2α))/(5+3cos 2α))  =−(1/3)ln (5+3cos 2α)+c .

2sinαcosαdαsin2α+4cos2α=sin2αdα1+32(1+cos2α)=133sin2αd(2α)5+3cos2α=13ln(5+3cos2α)+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18

2)t=tan(β/2)   dt=sec^2 (β/2)×(1/2)×dβ  ∫((2dt)/(1+t^2 )) ×(1/(2t+(1/2)×((1−t^2 )/(2t))))  ∫((2dt)/(1+t^2 ))×((4t)/(8t^2 +1−t^2 ))  8∫((tdt)/(1+t^2 ))×(1/(1+7t^2 ))    k=t^2      dk=2tdt  4∫(dk/(1+k))×(1/(1+7k))  (4/6)∫(((7+7k)−(1+7k))/((1+k)(1+7k)))dk  (2/3)∫((7dk)/(1+7k))−(2/3)∫(dk/(1+k))  (2/3)ln∣((1+7k)/(1+k))∣  (2/3)ln∣((1+7t^2 )/(1+t^2 ))∣  (2/3)ln∣((1+7tan^2 β)/(1+tan^2 β))∣

2)t=tanβ2dt=sec2β2×12×dβ2dt1+t2×12t+12×1t22t2dt1+t2×4t8t2+1t28tdt1+t2×11+7t2k=t2dk=2tdt4dk1+k×11+7k46(7+7k)(1+7k)(1+k)(1+7k)dk237dk1+7k23dk1+k23ln1+7k1+k23ln1+7t21+t223ln1+7tan2β1+tan2β

Terms of Service

Privacy Policy

Contact: info@tinkutara.com