Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37451 by ajfour last updated on 13/Jun/18

∫_0 ^( 2π) ((a^2 sin^2 θdθ)/(√(a^2 sin^2 θ+b^2 cos^2 θ))) = ?

02πa2sin2θdθa2sin2θ+b2cos2θ=?

Commented by MJS last updated on 13/Jun/18

this (like some others you posted) leads to  an elliptic integral. see wikipedia for more  info. elliptic integrals cannot be solved to  elementar functions. it′s also not possible  to exactly calculate the perimeter of an  ellipse

this(likesomeothersyouposted)leadstoanellipticintegral.seewikipediaformoreinfo.ellipticintegralscannotbesolvedtoelementarfunctions.itsalsonotpossibletoexactlycalculatetheperimeterofanellipse

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18

((a^2 sin^2 θ)/(√(a^2 sin^2 θ+b^2 cos^2 θ)))=((a^2 sin^2 θ)/(√(b^2 cos^2 θ(1+(a^2 /b^2 )tan^2 θ))))  ∫_0 ^(2Π) (((a^2 /b)sinθtanθ)/(√(1+(a^2 /b^2 )tan^2 θ)))dθ=∫_0 ^(2Π) f(θ)dθ  sin(2Π−θ)=−sinθ  tan(2Π−θ)=−tanθ  sin(Π−θ)=sinθ  tan(Π−θ)=−tanθ  ∫_0 ^(2Π) f(θ)dθ=2∫_0 ^Π f(θ)dθ   {sincef(2Π−θ)=f(θ)}  2∫_0 ^Π f(θ)dθ=2∫_0 ^Π f(Π−θ)dθ=−2∫_0 ^Π f(θ)dθ  4∫_0 ^Π f(θ)dθ=0  so given intregal value is zero    2∫_0 ^Π (((a^2 /b)sinθtanθ)/(√(1+(a^2 /b^2 )tan^2 θ)))dθ=2∫_0 ^Π (((a^2 /b)sin(Π−θ)tan(Π−θ))/(√(1+(a^2 /b^2 )tan^2 (Π−θ))))dθ  =−2∫_0 ^Π (((a^2 /b)×−sinθtanθ)/(√(1+(a^2 /b^2 )tan^2 θ)))dθ  so 4∫_0 ^Π (((a^2 /b)sinθtanθ)/(√(1+(a^2 /b^2 )tan^2 θ)))dθ=0

a2sin2θa2sin2θ+b2cos2θ=a2sin2θb2cos2θ(1+a2b2tan2θ)02Πa2bsinθtanθ1+a2b2tan2θdθ=02Πf(θ)dθsin(2Πθ)=sinθtan(2Πθ)=tanθsin(Πθ)=sinθtan(Πθ)=tanθ02Πf(θ)dθ=20Πf(θ)dθ{sincef(2Πθ)=f(θ)}20Πf(θ)dθ=20Πf(Πθ)dθ=20Πf(θ)dθ40Πf(θ)dθ=0sogivenintregalvalueiszero20Πa2bsinθtanθ1+a2b2tan2θdθ=20Πa2bsin(Πθ)tan(Πθ)1+a2b2tan2(Πθ)dθ=20Πa2b×sinθtanθ1+a2b2tan2θdθso40Πa2bsinθtanθ1+a2b2tan2θdθ=0

Commented by ajfour last updated on 13/Jun/18

should not be !

shouldnotbe!

Commented by ajfour last updated on 13/Jun/18

((a^2 sin^2 θ)/(√(b^2 cos^2 θ(1+(a^2 /b^2 )tan^2 θ))))  =((a^2 sin^2 θ)/(∣bcos θ∣(√(1+(a^2 /b^2 )tan^2 θ))))  =((a^2 ∣sin θ tan θ∣)/(b(√(1+(a^2 /b^2 )tan^2 θ))))  .....

a2sin2θb2cos2θ(1+a2b2tan2θ)=a2sin2θbcosθ1+a2b2tan2θ=a2sinθtanθb1+a2b2tan2θ.....

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18

in 4th quadrant sinθ and tanθ both negative  in 2nd sinθ=+ve  tanθ=−ve...why mod sign  ∣sinθtanθ∣ come here...

in4thquadrantsinθandtanθbothnegativein2ndsinθ=+vetanθ=ve...whymodsignsinθtanθcomehere...

Commented by ajfour last updated on 13/Jun/18

(√x^2 ) =∣x∣  in 2nd quadrant  ∣sin θ tan θ∣=−sin θ tan θ

x2=∣xin2ndquadrantsinθtanθ∣=sinθtanθ

Answered by ajfour last updated on 14/Jun/18

l=2π(√(x^2 +y^2 ))     =2π(√(a^2 +((a^2 b^2 )/a^2 ))) = 2π(√(a^2 +b^2 )) .  Why isn′t this correct if above  integral is same as perimeter of  ellipse.

l=2πx2+y2=2πa2+a2b2a2=2πa2+b2.Whyisntthiscorrectifaboveintegralissameasperimeterofellipse.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com