Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37540 by rahul 19 last updated on 14/Jun/18

For x>1 ,   ∫ sin^(−1) (((2x)/(1+x^2 )))dx = ?

Forx>1, sin1(2x1+x2)dx=?

Answered by ajfour last updated on 14/Jun/18

let x=tan θ   x>1 ⇒    nπ+(π/4) < θ < nπ+(π/2)  ⇒  ((2x)/(1+x^2 )) = sin 2θ        2nπ+(π/2) <  2θ < 2nπ+π  sin^(−1) (sin 2θ) = sin^(−1) sin (π−2θ)         2mπ < π−2θ < 2mπ+(π/2)  m=0  is appropriate since        π−2θ should lie in [−(π/2), (π/2)]  sin^(−1) sin (π−2θ)= π−2θ                                    = π−2tan^(−1) x  I=∫(π−2tan^(−1) x)dx    =πx−2(xtan^(−1) x−(1/2)∫ ((2xdx)/(1+x^2 )) )+c   I=πx−2xtan^(−1) x+ln ∣1+x^2 ∣+c .

letx=tanθ x>1nπ+π4<θ<nπ+π2 2x1+x2=sin2θ 2nπ+π2<2θ<2nπ+π sin1(sin2θ)=sin1sin(π2θ) 2mπ<π2θ<2mπ+π2 m=0isappropriatesince π2θshouldliein[π2,π2] sin1sin(π2θ)=π2θ =π2tan1x I=(π2tan1x)dx =πx2(xtan1x122xdx1+x2)+c I=πx2xtan1x+ln1+x2+c.

Commented byrahul 19 last updated on 14/Jun/18

thank you sir. ����

Commented byrahul 19 last updated on 14/Jun/18

Ajfour sir pls try these ques...  Q. no. 36700 & 36096.

Ajfoursirplstrytheseques... Q.no.36700&36096.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com