Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 37568 by math khazana by abdo last updated on 15/Jun/18

let α and β the roots of the equation  x^2  −2mx −1 =0  find interms of the real m  A = α^2  +β^2   B =α^3  +β^3   c =α^4  +β^4   D= α^6  +β^6

letαandβtherootsoftheequationx22mx1=0findintermsoftherealmA=α2+β2B=α3+β3c=α4+β4D=α6+β6

Answered by Rasheed.Sindhi last updated on 15/Jun/18

α & β are the roots of  x^2  −2mx −1 =0  ∴ α+β=2m      αβ=−1  A=α^2 +β^2 =(α+β)^2 −2αβ               =(2m)^2 −2(−1)=4m^2 +2  B=α^3 +β^3 =(α+β)^3 −3αβ(α+β)         =(2m)^3 −3(−1)(2m)=8m^3 +6m  C=α^4 +β^4 =(α^2 +β^2 )^2 −2(αβ)^2           =(4m^2 +2)^2 −2(−1)^2         =16m^4 +16m^2 +2  D=α^6 +β^6 =(α^3 +β^3 )^2 −2(αβ)^3            =(8m^3 +6m)^2 −2(−1)^3        =64m^6 +96m^3 +36m^2 +2

α&βaretherootsofx22mx1=0α+β=2mαβ=1A=α2+β2=(α+β)22αβ=(2m)22(1)=4m2+2B=α3+β3=(α+β)33αβ(α+β)=(2m)33(1)(2m)=8m3+6mC=α4+β4=(α2+β2)22(αβ)2=(4m2+2)22(1)2=16m4+16m2+2D=α6+β6=(α3+β3)22(αβ)3=(8m3+6m)22(1)3=64m6+96m3+36m2+2

Answered by Rio Mike last updated on 16/Jun/18

a)α^2 + β^2 = (α+β)^2 −2αβ  (α+β)^2 = (α+β)(α+β)                 = α^2 + αβ + αβ + β^2                 = α^2 +β^(2 ) + 2αβ                    = (α+β) − 2αβ  x^2 −2mx−1=0  S_r =^ α+β= ((−b)/a)                     = 2m  P_r = αβ=(c/a)               = −1  ⇒ α^2 +β^2 = (2m)^2 −2(−1)                 =  4m^2 +2

a)α2+β2=(α+β)22αβ(α+β)2=(α+β)(α+β)=α2+αβ+αβ+β2=α2+β2+2αβ=(α+β)2αβx22mx1=0Sr=α+β=ba=2mPr=αβ=ca=1α2+β2=(2m)22(1)=4m2+2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com