All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 37568 by math khazana by abdo last updated on 15/Jun/18
letαandβtherootsoftheequationx2−2mx−1=0findintermsoftherealmA=α2+β2B=α3+β3c=α4+β4D=α6+β6
Answered by Rasheed.Sindhi last updated on 15/Jun/18
α&βaretherootsofx2−2mx−1=0∴α+β=2mαβ=−1A=α2+β2=(α+β)2−2αβ=(2m)2−2(−1)=4m2+2B=α3+β3=(α+β)3−3αβ(α+β)=(2m)3−3(−1)(2m)=8m3+6mC=α4+β4=(α2+β2)2−2(αβ)2=(4m2+2)2−2(−1)2=16m4+16m2+2D=α6+β6=(α3+β3)2−2(αβ)3=(8m3+6m)2−2(−1)3=64m6+96m3+36m2+2
Answered by Rio Mike last updated on 16/Jun/18
a)α2+β2=(α+β)2−2αβ(α+β)2=(α+β)(α+β)=α2+αβ+αβ+β2=α2+β2+2αβ=(α+β)−2αβx2−2mx−1=0Sr=α+β=−ba=2mPr=αβ=ca=−1⇒α2+β2=(2m)2−2(−1)=4m2+2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com