Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 37579 by ajfour last updated on 15/Jun/18

a=((−1)/(2x^2 ))  with x=1 and v=0 at t=0  find time that particle takes to  reach x=0.25m .

$${a}=\frac{−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:\:{with}\:{x}=\mathrm{1}\:{and}\:{v}=\mathrm{0}\:{at}\:{t}=\mathrm{0} \\ $$$${find}\:{time}\:{that}\:{particle}\:{takes}\:{to} \\ $$$${reach}\:{x}=\mathrm{0}.\mathrm{25}{m}\:. \\ $$

Answered by ajfour last updated on 15/Jun/18

since a < 0 and v_0 =0  this means negative velocity  starts developing as t increases  from zero.     a=((vdv)/dx) = −(1/(2x^2 ))  ⇒   (v^2 /2) = (1/2)((1/x)−1)  ⇒    v=−(√((1/x)−1))     ∫_1 ^(  x) (dx/(√((1/x)−1))) = −t  let     x=cos^2 θ            dx = −sin 2θdθ  −t = −∫_0 ^(  cos^(−1) (√x))   ((2sin θcos θdθ)/(tan θ))  t=∫_0 ^(  cos^(−1) (√x))   (1+cos 2θ)dθ    =(θ+((sin 2θ)/2)+c)∣_0 ^(cos^(−1) (√x))     t =cos^(−1) (√x)+((√x))((√(1−x)))  And to reach  x=0.25       t = (𝛑/3)+((√3)/4) .

$${since}\:{a}\:<\:\mathrm{0}\:{and}\:{v}_{\mathrm{0}} =\mathrm{0} \\ $$$${this}\:{means}\:{negative}\:{velocity} \\ $$$${starts}\:{developing}\:{as}\:{t}\:{increases} \\ $$$${from}\:{zero}. \\ $$$$\:\:\:\boldsymbol{{a}}=\frac{\boldsymbol{{vdv}}}{\boldsymbol{{dx}}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\frac{{v}^{\mathrm{2}} }{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\:\:{v}=−\sqrt{\frac{\mathrm{1}}{{x}}−\mathrm{1}} \\ $$$$\:\:\:\int_{\mathrm{1}} ^{\:\:{x}} \frac{{dx}}{\sqrt{\frac{\mathrm{1}}{{x}}−\mathrm{1}}}\:=\:−{t} \\ $$$${let}\:\:\:\:\:{x}=\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\:\:\:\:\:\:\:\:\:\:{dx}\:=\:−\mathrm{sin}\:\mathrm{2}\theta{d}\theta \\ $$$$−{t}\:=\:−\int_{\mathrm{0}} ^{\:\:\mathrm{cos}^{−\mathrm{1}} \sqrt{{x}}} \:\:\frac{\mathrm{2sin}\:\theta\mathrm{cos}\:\theta{d}\theta}{\mathrm{tan}\:\theta} \\ $$$${t}=\int_{\mathrm{0}} ^{\:\:\mathrm{cos}^{−\mathrm{1}} \sqrt{{x}}} \:\:\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$\:\:=\left(\theta+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}+{c}\right)\mid_{\mathrm{0}} ^{\mathrm{cos}^{−\mathrm{1}} \sqrt{{x}}} \\ $$$$\:\:{t}\:=\mathrm{cos}^{−\mathrm{1}} \sqrt{{x}}+\left(\sqrt{{x}}\right)\left(\sqrt{\mathrm{1}−{x}}\right) \\ $$$${And}\:{to}\:{reach}\:\:{x}=\mathrm{0}.\mathrm{25} \\ $$$$\:\:\:\:\:\boldsymbol{{t}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com