Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 37582 by behi83417@gmail.com last updated on 15/Jun/18

Commented by ajfour last updated on 15/Jun/18

Commented by behi83417@gmail.com last updated on 15/Jun/18

in triangle AB^▲ C:∠A=72^• ,BC=10.  D and E,can move on BC,but such   that in AD^▲ E,always AD=DE.  find :∠DAE ,when area of AD^▲ E,  meets maximum valve.

intriangleABC:A=72,BC=10.DandE,canmoveonBC,butsuchthatinADE,alwaysAD=DE.find:DAE,whenareaofADE,meetsmaximumvalve.

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jun/18

excellent question...let the cell of brain active

excellentquestion...letthecellofbrainactive

Answered by ajfour last updated on 16/Jun/18

let ∠DAE=θ ;  ∠ACB=φ  in △ABC  (a/(sin α))=(b/(sin (α+φ)))      ....(i)  in △ ACE  (b/(sin θ))=((2ρcos θ)/(sin φ))           ....(ii)  S_(ADE) =S =(ρ/2)(bsin φ)     ....(iii)  using (ii) in (iii(             S =((b^2 sin^2 φ)/(2sin 2θ))  using (i)     S(θ,φ)=(((a^2 sin^2 (α+φ))/(sin^2 α)))(((sin^2 φ)/(2sin 2θ)))  When S is maximum     (∂S/∂θ) =0 ; ⇒      (∂S/∂θ)=  ((a^2 sin^2 (α+φ)sin^2 φ)/(2sin^2 α))(− ((2cos 2θ)/(sin^2 2θ)))=0  ⇒  cos 2θ=0   or   𝛉=(𝛑/4) .  (∂S/∂φ)=(a^2 /(2sin^2 αsin 2θ))[sin 2φsin^2 (α+φ)                   +sin^2 φsin (2α+2φ)]=0  ⇒  cos φ[1−cos (2α+2φ)]                       = − sin φsin (2α+2φ)  or   cos φ= cos (2α+3φ)  ⇒  2π−φ = 2α+3φ        𝛗 = (𝛑/2)−(𝛂/2)   S_(max) =((a^2 sin^2 ((π/2)+(α/2))sin^2 ((π/2)−(α/2)))/(2sin^2 α))       =(a^2 /4)tan^2 ((α/2)) .  E lies on BC produced towards  right.  ∠ADE = (π/2)   (yes)  ∠DAE = (π/4)  to meet such a  condition.

letDAE=θ;ACB=ϕinABCasinα=bsin(α+ϕ)....(i)inACEbsinθ=2ρcosθsinϕ....(ii)SADE=S=ρ2(bsinϕ)....(iii)using(ii)in(iii(S=b2sin2ϕ2sin2θusing(i)S(θ,ϕ)=(a2sin2(α+ϕ)sin2α)(sin2ϕ2sin2θ)WhenSismaximumSθ=0;Sθ=a2sin2(α+ϕ)sin2ϕ2sin2α(2cos2θsin22θ)=0cos2θ=0orθ=π4.Sϕ=a22sin2αsin2θ[sin2ϕsin2(α+ϕ)+sin2ϕsin(2α+2ϕ)]=0cosϕ[1cos(2α+2ϕ)]=sinϕsin(2α+2ϕ)orcosϕ=cos(2α+3ϕ)2πϕ=2α+3ϕϕ=π2α2Smax=a2sin2(π2+α2)sin2(π2α2)2sin2α=a24tan2(α2).EliesonBCproducedtowardsright.ADE=π2(yes)DAE=π4tomeetsuchacondition.

Commented by behi83417@gmail.com last updated on 16/Jun/18

if ∠DAE=(π/4)⇒∠ADE=(π/2).  do you have any idea sir?

ifDAE=π4ADE=π2.doyouhaveanyideasir?

Commented by behi83417@gmail.com last updated on 15/Jun/18

thank you so much dear Ajfour.  can  you calculate maximum area of AD^▲ E  with this given parts of AB^▲ C?  what is your idea when: AD=AE,  with same condition?

thankyousomuchdearAjfour.canyoucalculatemaximumareaofADEwiththisgivenpartsofABC?whatisyourideawhen:AD=AE,withsamecondition?

Commented by ajfour last updated on 15/Jun/18

My answer is posted Sir.

MyanswerispostedSir.

Commented by behi83417@gmail.com last updated on 15/Jun/18

sir Ajfour!im waiting for your answer.  why do you delete your nice figure?

sirAjfour!imwaitingforyouranswer.whydoyoudeleteyournicefigure?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com