Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37587 by prof Abdo imad last updated on 15/Jun/18

calculate  ∫_0 ^(2π)      (dx/(2cos^2 x +(√3) sin^2 x))

calculate02πdx2cos2x+3sin2x

Commented by math khazana by abdo last updated on 16/Jun/18

I = ∫_0 ^(2π)     (dx/(2 ((1+cos(2x))/2)+(√3)((1−cos(2x))/2)))  = ∫_0 ^(2π)     (dx/(1+cos(2x)+((√3)/2)(1−cos(2x))))  = ∫_0 ^(2π)       ((2dx)/(2 +2cos(2x) +(√3) −(√3)cos(2x)))  = ∫_0 ^(2π)      ((2dx)/(2+(√3)  +(2−(√3))cos(2x)))  =_(2x=t)     ∫_0 ^(4π)       ((2dx)/(2+(√3) +(2−(√3))cost)) (dt/2)  = ∫_0 ^(4π)     (dt/(2 +(√3) +(2−(√3))cost))  = ∫_0 ^(2π)     (dt/(2+(√3) +(2−(√3))cost)) +∫_(2π) ^(4π)     (dt/(2+(√3)  +(2−(√3))cost))  =K +H  chang. e^(it)  =z give  K = ∫_(∣z∣ =1)     (1/(2+(√3) +(2−(√3))((z+z^(−1) )/2))) (dz/(iz))  =  ∫_(∣z∣=1)        ((2dz)/(iz(4+2(√3)  +(2−(√3))(z+z^(−1) )))  = ∫_(∣z∣=1)   ((−2idz)/((2−(√3))z^2  +(4+2(√3))z +2−(√3)))  let ϕ(z)=  ((−2i)/((2−(√3))z^2  +(4+2(√3))z +2−(√3)))  poles of ϕ?  Δ^′  = (2+(√3))^2  −(2−(√3))^2 =4 +4(√3) +3−4 +4(√3) −3  =8(√3)  z_1 = ((−2−(√3)   +2(√2)(√(√3)))/(2−(√3)))  z_2 = ((−2−(√3) −2(√2) (√(√3)))/(2−(√3)))  ∣z_1 ∣ −1 =((∣ 2+(√3) −2(√2)(√(√3))∣)/(2−(√3)))  (2+(√3))^2  −8(√3) = 7 −4(√3) −8(√3)=7−12(√3)<0  ⇒∣z_1 ∣<1 and we verify that  ∣z_2 ∣>1  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =  ((−2i)/((2−(√3))(z_1  −z_2 )))  =  ((−2i)/((2−(√3))((4(√(2(√3))))/(2−(√3))))) =  ((−i)/(2(√(2(√3))))) .⇒  ∫_(∣z∣=1)  ϕ(z)dz = 2iπ ((−i)/(2(√(2(√3))))) = (π/(√(2(√3))))  =K .

I=02πdx21+cos(2x)2+31cos(2x)2=02πdx1+cos(2x)+32(1cos(2x))=02π2dx2+2cos(2x)+33cos(2x)=02π2dx2+3+(23)cos(2x)=2x=t04π2dx2+3+(23)costdt2=04πdt2+3+(23)cost=02πdt2+3+(23)cost+2π4πdt2+3+(23)cost=K+Hchang.eit=zgiveK=z=112+3+(23)z+z12dziz=z∣=12dziz(4+23+(23)(z+z1)=z∣=12idz(23)z2+(4+23)z+23letφ(z)=2i(23)z2+(4+23)z+23polesofφ?Δ=(2+3)2(23)2=4+43+34+433=83z1=23+22323z2=2322323z11=2+322323(2+3)283=74383=7123<0⇒∣z1∣<1andweverifythatz2∣>1z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2i(23)(z1z2)=2i(23)42323=i223.z∣=1φ(z)dz=2iπi223=π23=K.

Commented by math khazana by abdo last updated on 16/Jun/18

H =∫_(2π) ^(4π)      (dt/(2+(√3) +(2−(√3))cost))  =_(t =2π +x)       ∫_0 ^(2π)          (dx/(2+(√(3 ))+(2−(√3))cosx))   =K  =(π/(√(2(√3)))) ⇒  I =H +K = ((2π)/(√(2(√3)))) = ((π(√2))/(√(√3)))    I  =((π(√2))/(√(√3))) .

H=2π4πdt2+3+(23)cost=t=2π+x02πdx2+3+(23)cosx=K=π23I=H+K=2π23=π23I=π23.

Answered by ajfour last updated on 15/Jun/18

∫_0 ^(  2π) ((sec^2 xdx)/(2+(√3)tan^2 x))  =(4/(√3)) ∫_0 ^(  ∞) (dt/(t^2 +(2/(√3))))  = (4/(√3))×(3^(1/4) /(√2))((π/2)) =π (√(2/(√3)))  .

02πsec2xdx2+3tan2x=430dtt2+23=43×31/42(π2)=π23.

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jun/18

in place of (Π/2)    i put (Π/4)

inplaceofΠ2iputΠ4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com