Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37601 by prof Abdo imad last updated on 15/Jun/18

let give n inyehr natural≥1 find tbe value of  A_n = ∫_0 ^∞        (dx/((x^2 +1)(x^(2 ) +2)....(x^2  +n)))

letgiveninyehrnatural1findtbevalueofAn=0dx(x2+1)(x2+2)....(x2+n)

Commented by math khazana by abdo last updated on 17/Jun/18

2 A_n =∫_(−∞) ^(+∞)       (dx/((x^2  +1)(x^2  +2)....(x^2  +n)))  let ϕ(z)  = (1/((z^2  +1)(z^2  +2).....(z^2  +n)))  ϕ(z)= (1/(Π_(k=1) ^n (z^2  +k)))= (1/(Π_(k=1) ^n (z−i(√k))(z+i(√k))))  = (1/(Π_(k=1) ^n (z−i(√k))Π_(k=1) ^n  (z +i(√k)))) so the poles of  ϕ are i(√k)  and −i(√k)   with k∈{1,2,...,n}  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Σ_(z_k ∈w^+ )  Res(ϕ,z_k )with  w^+ ={z∈C/ Im(z)>0}  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Σ_(k=1) ^n  Res(ϕ,i(√k))  Res(ϕ,i(√k)) = (1/(p^′ (i(√k)))) with   p(x)=(x^2 +1)(x^2  +2)...(x^2  +n)  let q(t)=(t+1)(t+2)....(t+n) ⇒  q^′ (t) = Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (x+p)  p(x)=q(x^2 )⇒p^′ (x) =2x q^′ (x^2 ) ⇒  p^′ (x) =2x Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (x^2  +p) ⇒  p^′ (i(√m)) =2i(√m)Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Σ_(m=1) ^n    (1/(2i(√m))){Σ_(k=1) ^n Π_(p=1_(p≠−k) ) ^n (p−m)}  = (π/(√m)) Σ_(m=1) ^n { Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)}.

2An=+dx(x2+1)(x2+2)....(x2+n)letφ(z)=1(z2+1)(z2+2).....(z2+n)φ(z)=1k=1n(z2+k)=1k=1n(zik)(z+ik)=1k=1n(zik)k=1n(z+ik)sothepolesofφareikandikwithk{1,2,...,n}+φ(z)dz=2iπzkw+Res(φ,zk)withw+={zC/Im(z)>0}+φ(z)dz=2iπk=1nRes(φ,ik)Res(φ,ik)=1p(ik)withp(x)=(x2+1)(x2+2)...(x2+n)letq(t)=(t+1)(t+2)....(t+n)q(t)=k=1np=1pkn(x+p)p(x)=q(x2)p(x)=2xq(x2)p(x)=2xk=1np=1pkn(x2+p)p(im)=2imk=1np=1pkn(pm)+φ(z)dz=2iπm=1n12im{k=1np=1pkn(pm)}=πmm=1n{k=1np=1pkn(pm)}.

Commented by math khazana by abdo last updated on 17/Jun/18

∫_(−∞) ^(+∞)  ϕ(z)dz =(π/(√m))Σ_(m=1) ^n   { Σ_(m=1) ^n  Π_(p=1) ^n (p−m)}^(−1)   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπΣ_(m=1) ^n   (1/(2i(√m)Σ_(k=1) ^n Π_(p=1_(p≠−k) ) ^n (p−m)))  =Σ_(m=1) ^n   (π/(√m)){ Σ_(k=1) ^n  Π_(p=1_(p≠−k) ) ^n (p−m)}^(−1)

+φ(z)dz=πmm=1n{m=1np=1n(pm)}1+φ(z)dz=2iπm=1n12imk=1np=1pkn(pm)=m=1nπm{k=1np=1pkn(pm)}1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com