Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37602 by prof Abdo imad last updated on 15/Jun/18

find the value of  f(a)= ∫_0 ^∞    ((x^2 −1)/((x^4    +a^4 )^2 ))dx  2) calculate   ∫_0 ^∞       ((x^2  −1)/((x^4  +1)^2 ))dx

findthevalueoff(a)=0x21(x4+a4)2dx2)calculate0x21(x4+1)2dx

Commented by prof Abdo imad last updated on 16/Jun/18

1) we have f(a)=∫_(−∞) ^(+∞)   ((x^2 −1)/((x^4  +a^4 )^2 ))dx  let ϕ(z)= ((z^2  −1)/((z^4  +a^4 )^2 ))  ϕ(z)= ((z^2  −1)/({ (z^2 )^2 −(ia^2 )^2 }^2 ))  =((z^2  −1)/((z^2 −ia^2 )^2 (z^2  +ia^2 )^2 ))  =((z^2  −1)/((z −a e^(i(π/4)) )^2 ( z+ae^((iπ)/4) )^2 (z−a e^(−((iπ)/4)) )^2 (z+a e^(−((iπ)/4)) )^2 ))  the poles of ϕ are  +^−  e^(i(π/4))   and +^−  e^(−((iπ)/4))   (doubles)  let suppose a>0  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ, ae^((iπ)/4) ) +Res(ϕ,−ae^(−((iπ)/4)) )}  Res(ϕ,ae^(i(π/4)) ) =lim_(z→ae^((iπ)/4) )   (1/((2−1)!)){(z−ae^((iπ)/4) )^2 ϕ(z)}^((1))   =lim_(z→ ae^((iπ)/4) )     {  ((z^2 −1)/((z+a e^((iπ)/4) )^2 (z^2  +ia^2 )^2 ))}^((1))   =lim_(z→ ae^((iπ)/4) )    ((2z(z+ae^((iπ)/4) )(z^2  +ia^2 )^2  −(z^2 −1)(2(z+ae^((iπ)/4) )(z^2  +ia^2 )^2  +4z(z^2  +ia^2 )(z+ae^((iπ)/4) )^2 )/((z +ae^((iπ)/4) )^4 ( z^2  +ia^2 )^4 ))  =lim_(z→a e^((iπ)/4) )   ((2z(z^2  +ia^2 )−(z^2 −1){ 2(z^2  +ia^2 )+4z(z+ae^((iπ)/4) )})/((z +a e^((iπ)/4) )^3 (z^2  +ia^2 )^3 ))  =((2a e^((iπ)/4) (2ia^2 ) −(ia^2 −1){4ia^2  +4ae^((iπ)/4)  (2ae^((iπ)/4) )})/((2ae^(i(π/4)) )^3 (2ia^2 )^3 ))  =((4ia^3  e^((iπ)/4)  −(ia^2 −1){ 4ia^2  +8a^2 i))/(8a^3  i e^((iπ)/4)  (−8ia^6 )))  =(( 4ia^3 e^((iπ)/4)   −12ia^2 (ia^2 −1))/(64 a^9  e^((iπ)/4) ))  =((4ia^(3 ) e^((iπ)/4)  +12a^4   +12ia^2 )/(64a^9  e^((iπ)/4) )) =.....

1)wehavef(a)=+x21(x4+a4)2dxletφ(z)=z21(z4+a4)2φ(z)=z21{(z2)2(ia2)2}2=z21(z2ia2)2(z2+ia2)2=z21(zaeiπ4)2(z+aeiπ4)2(zaeiπ4)2(z+aeiπ4)2thepolesofφare+eiπ4and+eiπ4(doubles)letsupposea>0+φ(z)dz=2iπ{Res(φ,aeiπ4)+Res(φ,aeiπ4)}Res(φ,aeiπ4)=limzaeiπ41(21)!{(zaeiπ4)2φ(z)}(1)=limzaeiπ4{z21(z+aeiπ4)2(z2+ia2)2}(1)=limzaeiπ42z(z+aeiπ4)(z2+ia2)2(z21)(2(z+aeiπ4)(z2+ia2)2+4z(z2+ia2)(z+aeiπ4)2(z+aeiπ4)4(z2+ia2)4=limzaeiπ42z(z2+ia2)(z21){2(z2+ia2)+4z(z+aeiπ4)}(z+aeiπ4)3(z2+ia2)3=2aeiπ4(2ia2)(ia21){4ia2+4aeiπ4(2aeiπ4)}(2aeiπ4)3(2ia2)3=4ia3eiπ4(ia21){4ia2+8a2i)8a3ieiπ4(8ia6)=4ia3eiπ412ia2(ia21)64a9eiπ4=4ia3eiπ4+12a4+12ia264a9eiπ4=.....

Commented by behi83417@gmail.com last updated on 16/Jun/18

x=a(√(tgt))⇒dx=((a(1+tg^2 t)dt)/(2(√(tgt))))  I=∫((a^2 tgt−1)/((a^4 tg^2 t+a^4 )^2 )).((a(1+tg^2 t)dt)/(2(√(tgt))))  ⇒I=∫((a^2 tgt−1)/(a^8 (tg^2 t+1)^2 )).((a(1+tg^2 t)dt)/(2(√(tgt))))=  =(1/a^7 )∫((a^2 tgt−1)/(2(√(tgt))(1+tg^2 t)))dt,tgt=u^2   (1+tg^2 t)dt=2udu⇒dt=((2udu)/(1+u^4 ))    ⇒I=(1/a^7 )∫((a^2 u^2 −1)/(2u(1+u^4 ))).((2udu)/(1+u^4 ))=(1/a^7 )∫((a^2 u^2 −1)/((1+u^4 )^2 ))du=  =(1/a^7 )[∫((a^2 u^2 )/((1+u^4 )^2 ))du−∫(du/((1+u^4 )^2 ))]=...  part#1)∫((u^2 du)/((1+u^4 )^2 ))=(u^3 /(4(u^4 +1)))+((√2)/(16))tg^(−1) ((u(√2))/(1−u^2 ))+  +((√2)/(16))ln((u^2 −u(√2)+1)/(√(1+u^4 )))+const  part#2)∫(du/((1+u^4 )^2 ))=(u/(4(u^4 +1)))+((3(√2))/(16))tg^(−1) ((u(√2))/(1−u^2 ))−  −((3(√2))/(16))ln((u^2 −u(√2)+1)/(√(1+u^4 )))+const  by symplifing:  I=(1/a^5 ).part(#1)−(1/a^7 ).part(#2)  change⇒u→(x/a)  I=(1/a^5 )[((ax^3 )/(4(a^4 +x^4 )))+((√2)/(16))tg^(−1) (((ax(√2))/(a^2 −x^2 )))−  −((3(√2))/(16))ln((x^2 −ax(√2)+a^2 )/(√(a^4 +x^4 )))]−(1/a^7 )[((a^3 x)/(4(a^4 +x^4 )))+   +((3(√2))/(16))tg^(−1) ((ax(√2))/(a^2 −x^2 ))−((3(√2))/(16))ln((x^2 −ax(√2)+a^2 )/(√(a^4 +x^4 )))]+const  3)I=F(∞)−F(0)=0  4)a=1⇒I=(1/8)[((2x)/(1+x^4 ))+2(√2)tg^(−1) ((x(√2))/(1−x^2 ))−  −(√2)ln((x^2 −x(√2)+1)/(√(1+x^4 )))]+const .■

x=atgtdx=a(1+tg2t)dt2tgtI=a2tgt1(a4tg2t+a4)2.a(1+tg2t)dt2tgtI=a2tgt1a8(tg2t+1)2.a(1+tg2t)dt2tgt==1a7a2tgt12tgt(1+tg2t)dt,tgt=u2(1+tg2t)dt=2ududt=2udu1+u4I=1a7a2u212u(1+u4).2udu1+u4=1a7a2u21(1+u4)2du==1a7[a2u2(1+u4)2dudu(1+u4)2]=...You can't use 'macro parameter character #' in math mode+216lnu2u2+11+u4+constYou can't use 'macro parameter character #' in math mode3216lnu2u2+11+u4+constbysymplifing:You can't use 'macro parameter character #' in math modechangeuxaI=1a5[ax34(a4+x4)+216tg1(ax2a2x2)3216lnx2ax2+a2a4+x4]1a7[a3x4(a4+x4)++3216tg1ax2a2x23216lnx2ax2+a2a4+x4]+const3)I=F()F(0)=04)a=1I=18[2x1+x4+22tg1x21x22lnx2x2+11+x4]+const.

Commented by behi83417@gmail.com last updated on 16/Jun/18

dear prof. abdo! is it ok?

dearprof.abdo!isitok?

Commented by prof Abdo imad last updated on 16/Jun/18

sir Behi you have using a good changement  at the begining and its seems that your method  is correct  and i will giveyou the final answer  after finishing the calculus...

sirBehiyouhaveusingagoodchangementatthebegininganditsseemsthatyourmethodiscorrectandiwillgiveyouthefinalanswerafterfinishingthecalculus...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com