Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 37627 by Joel579 last updated on 16/Jun/18

Given {x} = x − ⌊x⌋  How many real solutions from equation  {x} + {x^2 } = 1  with −10 ≤ x ≤ 10 ?

$$\mathrm{Given}\:\left\{{x}\right\}\:=\:{x}\:−\:\lfloor{x}\rfloor \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{from}\:\mathrm{equation} \\ $$$$\left\{{x}\right\}\:+\:\left\{{x}^{\mathrm{2}} \right\}\:=\:\mathrm{1} \\ $$$$\mathrm{with}\:−\mathrm{10}\:\leqslant\:{x}\:\leqslant\:\mathrm{10}\:? \\ $$

Answered by ajfour last updated on 16/Jun/18

let x=m+h  where m∈Z and h={x}  {x}+{x^2 }=1  ⇒   h+(m+h)^2 −[(m+h)^2 ]=1    h+m^2 +2mh+h^2 −m^2 −[2mh+h^2 ]=1  ⇒ {2mh+h^2 }=1−h  ⇒ h≠ 0  ...

$${let}\:{x}={m}+{h} \\ $$$${where}\:{m}\in\mathbb{Z}\:{and}\:{h}=\left\{{x}\right\} \\ $$$$\left\{{x}\right\}+\left\{{x}^{\mathrm{2}} \right\}=\mathrm{1} \\ $$$$\Rightarrow\:\:\:{h}+\left({m}+{h}\right)^{\mathrm{2}} −\left[\left({m}+{h}\right)^{\mathrm{2}} \right]=\mathrm{1} \\ $$$$\:\:{h}+{m}^{\mathrm{2}} +\mathrm{2}{mh}+{h}^{\mathrm{2}} −{m}^{\mathrm{2}} −\left[\mathrm{2}{mh}+{h}^{\mathrm{2}} \right]=\mathrm{1} \\ $$$$\Rightarrow\:\left\{\mathrm{2}{mh}+{h}^{\mathrm{2}} \right\}=\mathrm{1}−{h} \\ $$$$\Rightarrow\:{h}\neq\:\mathrm{0} \\ $$$$... \\ $$

Commented by Rasheed.Sindhi last updated on 17/Jun/18

Nice begining!

$$\mathcal{N}{ice}\:{begining}! \\ $$

Answered by ajfour last updated on 16/Jun/18

172 real solutions, i think.

$$\mathrm{172}\:{real}\:{solutions},\:{i}\:{think}. \\ $$

Answered by MJS last updated on 16/Jun/18

for x>0 we must solve equations  x∈[0;1[  (x−0)+(x^2 −0)=1 ⇒ x^2 +x−1=0  x∈[1;2[  (x−1)+(x^2 −1)=1 ⇒ x^2 +x−3=0  (x−1)+(x^2 −2)=1 ⇒ x^2 +x−4=0  (x−1)+(x^2 −3)=1 ⇒ x^2 +x−5=0  x∈[2;3[  (x−2)+(x^2 −4)=1 ⇒ x^2 +x−7=0  ...  (x−2)+(x^2 −8)=1 ⇒ x^2 +x−11=0    x∈[n;n+1]  (x−n)+(x^2 −n^2 )=1 ⇒ x^2 +x−(n^2 +n+1)=0  ...  (x−n)+(x^2 −((n+1)^2 −1))=1 ⇒                                            ⇒ x^2 +x−(n^2 +3n+1)=0    we have 1+3+5+7+9+11+13+15+17+19=  = 100 solutions in [0;10]    for x<0 the negative solutions of above  equations count  ⇒ we have no solution in [−1;0[        1 solution in [−2;−1[        3 solutions in [−3;−2[  ...  so we have 100+100−19=181 solutions  in [−10;10]

$$\mathrm{for}\:{x}>\mathrm{0}\:\mathrm{we}\:\mathrm{must}\:\mathrm{solve}\:\mathrm{equations} \\ $$$${x}\in\left[\mathrm{0};\mathrm{1}\left[\right.\right. \\ $$$$\left({x}−\mathrm{0}\right)+\left({x}^{\mathrm{2}} −\mathrm{0}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}\in\left[\mathrm{1};\mathrm{2}\left[\right.\right. \\ $$$$\left({x}−\mathrm{1}\right)+\left({x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{3}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)+\left({x}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{4}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)+\left({x}^{\mathrm{2}} −\mathrm{3}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{5}=\mathrm{0} \\ $$$${x}\in\left[\mathrm{2};\mathrm{3}\left[\right.\right. \\ $$$$\left({x}−\mathrm{2}\right)+\left({x}^{\mathrm{2}} −\mathrm{4}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{7}=\mathrm{0} \\ $$$$... \\ $$$$\left({x}−\mathrm{2}\right)+\left({x}^{\mathrm{2}} −\mathrm{8}\right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{11}=\mathrm{0} \\ $$$$ \\ $$$${x}\in\left[{n};{n}+\mathrm{1}\right] \\ $$$$\left({x}−{n}\right)+\left({x}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)=\mathrm{1}\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\left({n}^{\mathrm{2}} +{n}+\mathrm{1}\right)=\mathrm{0} \\ $$$$... \\ $$$$\left({x}−{n}\right)+\left({x}^{\mathrm{2}} −\left(\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right)\right)=\mathrm{1}\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{x}^{\mathrm{2}} +{x}−\left({n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+\mathrm{9}+\mathrm{11}+\mathrm{13}+\mathrm{15}+\mathrm{17}+\mathrm{19}= \\ $$$$=\:\mathrm{100}\:\mathrm{solutions}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{10}\right] \\ $$$$ \\ $$$$\mathrm{for}\:{x}<\mathrm{0}\:\mathrm{the}\:\mathrm{negative}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{above} \\ $$$$\mathrm{equations}\:\mathrm{count} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{in}\:\left[−\mathrm{1};\mathrm{0}\left[\right.\right. \\ $$$$\:\:\:\:\:\:\mathrm{1}\:\mathrm{solution}\:\mathrm{in}\:\left[−\mathrm{2};−\mathrm{1}\left[\right.\right. \\ $$$$\:\:\:\:\:\:\mathrm{3}\:\mathrm{solutions}\:\mathrm{in}\:\left[−\mathrm{3};−\mathrm{2}\left[\right.\right. \\ $$$$... \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{100}+\mathrm{100}−\mathrm{19}=\mathrm{181}\:\mathrm{solutions} \\ $$$$\mathrm{in}\:\left[−\mathrm{10};\mathrm{10}\right] \\ $$

Commented by Rasheed.Sindhi last updated on 17/Jun/18

 Nice idea of interval-wise analysis!

$$\:\mathcal{N}\mathrm{ice}\:\mathrm{idea}\:\mathrm{of}\:\mathrm{interval}-\mathrm{wise}\:\mathrm{analysis}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com