Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37777 by rahul 19 last updated on 17/Jun/18

Find the shortest distance between  the curves 9x^2 +9y^2 −30y+16=0 and  y^2 =x^3  .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{curves}\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{30}{y}+\mathrm{16}=\mathrm{0}\:{and} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:. \\ $$

Answered by MJS last updated on 17/Jun/18

like the similar one you posted earlier  circle: x^2 +(y−(5/3))^2 =1; center C= ((0),((5/3)) )  we′re looking for the point P= ((x),((±(√x^3 ))) ) with  ∣CP∣ minimal  we′re looking for the minimum of  f(x)=x^2 +((5/3)±(√x^3 ))^2 =x^3 +x^2 ±((10)/3)(√x^3 )+((25)/9)  f′(x)=3x^2 +2x±5(√x)  3x^2 +2x−5(√x)=0 ⇒ x_1 =0; x_2 =1  3x^2 +2x+5(√x)=0 ⇒ x=0  f(0)=((25)/9)  f(1)=((73)/9) or ((13)/9)  ⇒ minimal distance ∣CP∣=((√(13))/3)  ⇒ minimal distance between curves=((√(13))/3)−1

$$\mathrm{like}\:\mathrm{the}\:\mathrm{similar}\:\mathrm{one}\:\mathrm{you}\:\mathrm{posted}\:\mathrm{earlier} \\ $$$$\mathrm{circle}:\:{x}^{\mathrm{2}} +\left({y}−\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{1};\:\mathrm{center}\:{C}=\begin{pmatrix}{\mathrm{0}}\\{\frac{\mathrm{5}}{\mathrm{3}}}\end{pmatrix} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{point}\:{P}=\begin{pmatrix}{{x}}\\{\pm\sqrt{{x}^{\mathrm{3}} }}\end{pmatrix}\:\mathrm{with} \\ $$$$\mid{CP}\mid\:\mathrm{minimal} \\ $$$$\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} +\left(\frac{\mathrm{5}}{\mathrm{3}}\pm\sqrt{{x}^{\mathrm{3}} }\right)^{\mathrm{2}} ={x}^{\mathrm{3}} +{x}^{\mathrm{2}} \pm\frac{\mathrm{10}}{\mathrm{3}}\sqrt{{x}^{\mathrm{3}} }+\frac{\mathrm{25}}{\mathrm{9}} \\ $$$${f}'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}\pm\mathrm{5}\sqrt{{x}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}\sqrt{{x}}=\mathrm{0}\:\Rightarrow\:{x}_{\mathrm{1}} =\mathrm{0};\:{x}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\sqrt{{x}}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)=\frac{\mathrm{25}}{\mathrm{9}} \\ $$$${f}\left(\mathrm{1}\right)=\frac{\mathrm{73}}{\mathrm{9}}\:\mathrm{or}\:\frac{\mathrm{13}}{\mathrm{9}} \\ $$$$\Rightarrow\:\mathrm{minimal}\:\mathrm{distance}\:\mid{CP}\mid=\frac{\sqrt{\mathrm{13}}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{minimal}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{curves}=\frac{\sqrt{\mathrm{13}}}{\mathrm{3}}−\mathrm{1} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18

excellent sir

$${excellent}\:{sir} \\ $$

Commented by MJS last updated on 17/Jun/18

((√(13))/3)−1≈.20185  .2(√2)≈.28284 so this is a good estimate

$$\frac{\sqrt{\mathrm{13}}}{\mathrm{3}}−\mathrm{1}\approx.\mathrm{20185} \\ $$$$.\mathrm{2}\sqrt{\mathrm{2}}\approx.\mathrm{28284}\:\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\mathrm{good}\:\mathrm{estimate} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18

shortest distance...see(0.8,1) lies on circle...  distance from (0.8,1)≈half diagonal of the  smallest squre  (1/2)×(√((0.2)^2 +(0.2)^2 )) ....pls comment

$${shortest}\:{distance}...{see}\left(\mathrm{0}.\mathrm{8},\mathrm{1}\right)\:{lies}\:{on}\:{circle}... \\ $$$${distance}\:{from}\:\left(\mathrm{0}.\mathrm{8},\mathrm{1}\right)\approx{half}\:{diagonal}\:{of}\:{the} \\ $$$${smallest}\:{squre}\:\:\frac{\mathrm{1}}{\mathrm{2}}×\sqrt{\left(\mathrm{0}.\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{0}.\mathrm{2}\right)^{\mathrm{2}} }\:....{pls}\:{comment} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com