Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37784 by prof Abdo imad last updated on 17/Jun/18

find  ∫_0 ^(π/4)      (dx/(2cosx +cos(2x)))

find0π4dx2cosx+cos(2x)

Commented by math khazana by abdo last updated on 18/Jun/18

 I = ∫_0 ^(π/4)      (dx/(2cosx +2 cos^2 x−1))  =∫_0 ^(π/4)     (dx/(2cos^2 x +2cosx −1)) let decompose  F(x)= (1/(2x^2  +2x −1))  Δ^′  =1+2=3 ⇒x_1 =((−1+(√3))/2) and x_2 =((−1−(√3))/2) ⇒  F(x)= (1/(2(x−x_1 )(x−x_2 ))) =(a/(x−x_1 )) +(b/(x−x_2 ))  a= (1/(2(x_1  −x_2 ))) =(1/(2.(√3)))  b= (1/(2(x_2  −x_1 ))) = (1/(2(−(√3)))) =−(1/(2(√3))) ⇒  F(x)= (1/(2(√3))){  (1/(x −((−1+(√3))/2)))  −(1/(x−((−1−(√3))/2)))}  = (1/(2(√3))){   (2/(2x+1−(√3))) − (2/(2x +1+(√3)))} ⇒  I = (1/(√3)) ∫_0 ^(π/4)       (dx/(2cosx +1−(√3))) −(1/(√3))∫_0 ^(π/4)    (dx/(2cosx +1+(√3)))  =H −K  changement tan((x/2))=t give  H = (1/(√3)) ∫_0 ^((√2)−1)     (1/(2((1−t^2 )/(1+t^2 )) +1−(√3)))  ((2dt)/(1+t^2 ))  = (2/(√3)) ∫_0 ^((√2)−1)         (dt/(2−2t^2  +1−(√3) +(1−(√3))t^2 ))  =(2/(√3)) ∫_0 ^((√2)−1)       (dt/(3−(√3)  −(1+(√3))t^2 ))  =(2/((√3)(3−(√3)))) ∫_0 ^((√2)−1)    (dt/(1−((√((1+(√3))/(3−(√3))))t)^2 ))  =_((√((1+(√3))/(3−(√3))))t=u)    (2/((√3)(3−(√3)))) ∫_0 ^(((√2)−1)(√((1+(√3))/(3−(√3)))))     (1/(1−u^2 )) (√((3−(√3))/(1+(√3))))du  =  (2/((√3)(√((3−(√(3)(1+(√(3))))))))) ∫_0 ^(((√(2−1)))(√((1+(√3))/(3−(√3)))))     (du/(1−u^2 ))  = (1/((√3)(√((3−(√3))(1+(√3))))))[ln∣ ((1+u)/(1−u))∣]_0 ^(((√2)−1)(√((1+(√3))/(3−(√3)))))   = ((√3)/(3(√((3−(√3))(1+(√3))))))ln(   ((1+λ)/(1−λ))) with  λ= ((√2)−1)(√((1+(√3))/(3−(√3))))  we follow the same?method to calculate K....

I=0π4dx2cosx+2cos2x1=0π4dx2cos2x+2cosx1letdecomposeF(x)=12x2+2x1Δ=1+2=3x1=1+32andx2=132F(x)=12(xx1)(xx2)=axx1+bxx2a=12(x1x2)=12.3b=12(x2x1)=12(3)=123F(x)=123{1x1+321x132}=123{22x+1322x+1+3}I=130π4dx2cosx+13130π4dx2cosx+1+3=HKchangementtan(x2)=tgiveH=13021121t21+t2+132dt1+t2=23021dt22t2+13+(13)t2=23021dt33(1+3)t2=23(33)021dt1(1+333t)2=1+333t=u23(33)0(21)1+33311u2331+3du=23(33)(1+3)0(21)1+333du1u2=13(33)(1+3)[ln1+u1u]0(21)1+333=33(33)(1+3)ln(1+λ1λ)withλ=(21)1+333wefollowthesame?methodtocalculateK....

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jun/18

∫_0 ^(Π/4) (dx/(2cosx+2cos^2 x−1))  =(1/2)∫_0 ^(Π/4) (dx/(cos^2 x+cosx−(1/2)))  a^2 +a−(1/2)  a^2 +2.a.(1/2)+(1/4)−(1/4)−(1/2)  (a+(1/2))^2 −(3/4)  (a+(1/2)+(((√3) )/2))(a+(1/2)−(((√3) )/2))  (a+((1+(√3) )/2))(a+((1−(√3) )/2))  (a+((1+(√3) )/2))−(a+((1−(√3) )/2))  (√3)   =(1/(2(√3)))∫_0 ^(Π/4) (((√3) )/((cosx+((1+(√3) )/2))(cosx+((1−(√3) )/2))))dx  =(1/(2(√3) ))∫_0 ^(Π/4) (dx/(cosx+((1−(√3) )/2)))−(1/(2(√3)))∫_0 ^(Π/4) (dx/(cosx+((1−(√3) )/2)))  =(1/(2(√3) )){∫_0 ^(Π/4) (dx/(a+cosx))−∫_0 ^(Π/4) (dx/(b+cosx))}  now it can be solved but lenthy...method...∫  ∫(dx/(a+cosx))  ∫(dx/(a+((1−tan^2 (x/2))/(1+tan^2 (x/2)))))  ∫((sec^2 (x/2))/(a+atan^2 (x/2)+1−tan^2 (x/2)))dx  ∫((sec^2 (x/2))/((a+1)+tan^2 (x/2)(a−1)))dx  (1/(a−1))∫((sec^2 (x/2))/(((a+1)/(a−1))+tan^2 (x/2)))dx  t=tan(x/2)   dt=sec^2 (x/2)×(1/2)dx  (2/(a−1))∫(dt/({(√(((a+1)/(a−1)) )) }^2 +t^2 ))  (2/(a−1))×(((√(a−1))  )/(√(a+1))) ×tan^(−1) {(t/(((√(a−1)) )/(√(a+1))))}...like this way

0Π4dx2cosx+2cos2x1=120Π4dxcos2x+cosx12a2+a12a2+2.a.12+141412(a+12)234(a+12+32)(a+1232)(a+1+32)(a+132)(a+1+32)(a+132)3=1230Π43(cosx+1+32)(cosx+132)dx=1230Π4dxcosx+1321230Π4dxcosx+132=123{0Π4dxa+cosx0Π4dxb+cosx}nowitcanbesolvedbutlenthy...method...dxa+cosxdxa+1tan2x21+tan2x2sec2x2a+atan2x2+1tan2x2dxsec2x2(a+1)+tan2x2(a1)dx1a1sec2x2a+1a1+tan2x2dxt=tanx2dt=sec2x2×12dx2a1dt{a+1a1}2+t22a1×a1a+1×tan1{ta1a+1}...likethisway

Answered by MJS last updated on 17/Jun/18

Weierstrass  ∫(dx/(2cos x +cos 2x))=            [t=tan (x/2) → dx=((2dt)/(1+t^2 ))]  =−2∫((t^2 +1)/(t^4 +6t^2 −3))dt=  =−2∫((t^2 +1)/((t−(√(−3+2(√3))))(t+(√(−3+2(√3))))(t^2 +3+2(√3))))dt=  =−2(∫(A/(t−(√(−3+2(√3)))))dt+∫(B/(t+(√(−3+2(√3)))))dt+∫(C/(t^2 +3+2(√3)))dt)=  =−((√(2(√3)))/6)∫(dt/(t−(√(−3+2(√3)))))+((√(2(√3)))/6)∫(dt/(t+(√(−3+2(√3)))))−((3+(√3))/3)∫(dt/(t^2 +3+2(√3))))=            [∫(dx/(x±a))=ln∣x±a∣; ∫(dx/(x^2 +a))=(1/(√a))arctan (x/(√a))]  =((√(2(√3)))/6)(ln∣t+(√(−3+2(√3)))∣−ln∣t−(√(−3+2(√3)))∣)−(1+((√3)/3))(1/(√(3+2(√3))))arctan (t/(√(3+2(√3))))=  =((√(2(√3)))/6)ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −((√(2(√3)))/3)arctan (((√(2(√3)))(3−(√3))t)/6)=  =((√(2(√3)))/6)(ln∣((t+(√(−3+2(√3))))/(t−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))t)/6))=  =((√(2(√3)))/6)(ln∣((tan (x/2)+(√(−3+2(√3))))/(tan (x/2)−(√(−3+2(√3)))))∣ −2arctan (((√(2(√3)))(3−(√3))tan (x/2))/6))+C

Weierstrassdx2cosx+cos2x=[t=tanx2dx=2dt1+t2]=2t2+1t4+6t23dt==2t2+1(t3+23)(t+3+23)(t2+3+23)dt==2(At3+23dt+Bt+3+23dt+Ct2+3+23dt)==236dtt3+23+236dtt+3+233+33dtt2+3+23)=[dxx±a=lnx±a;dxx2+a=1aarctanxa]=236(lnt+3+23lnt3+23)(1+33)13+23arctant3+23==236lnt+3+23t3+23233arctan23(33)t6==236(lnt+3+23t3+232arctan23(33)t6)==236(lntanx2+3+23tanx23+232arctan23(33)tanx26)+C

Commented by math khazana by abdo last updated on 18/Jun/18

good hard work

goodhardwork

Terms of Service

Privacy Policy

Contact: info@tinkutara.com