Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 37804 by ajfour last updated on 17/Jun/18

Commented by ajfour last updated on 17/Jun/18

Find maximum area of  quadrilateral MNOP in terms  of radius R of circle.  (O is the center of circle).

$${Find}\:{maximum}\:{area}\:{of} \\ $$$${quadrilateral}\:{MNOP}\:{in}\:{terms} \\ $$$${of}\:{radius}\:\boldsymbol{{R}}\:{of}\:{circle}. \\ $$$$\left({O}\:{is}\:{the}\:{center}\:{of}\:{circle}\right). \\ $$

Answered by MrW3 last updated on 18/Jun/18

Commented by MrW3 last updated on 18/Jun/18

OQ=R sin ϕ, QD=R cos ϕ  OR=R sin θ, RA=R cos θ  ((RM)/(RA))=((MQ)/(QD))  ((RM)/(RA))=((RQ−RM)/(QD))  ((RM)/(RA))=((OR+OQ−RM)/(QD))  ((RM)/(R cos θ))=((R(sin θ+sin ϕ)−RM)/(R cos ϕ))  (cos θ+cos ϕ) RM=cos θ (sin θ+sin ϕ)R  ⇒RM=((cos θ (sin θ+sin ϕ)R)/((cos θ+cos ϕ)))  OM=OR−RM=R sin θ−((cos θ (sin θ+sin ϕ)R)/((cos θ+cos ϕ)))  OM=R ((sin θ cos θ+ sin θ cos ϕ−cos θ sin θ−cos θ sin ϕ)/((cos θ+cos ϕ)))  ⇒OM= (( sin (θ−ϕ) R)/((cos θ+cos ϕ)))    ...

$${OQ}={R}\:\mathrm{sin}\:\varphi,\:{QD}={R}\:\mathrm{cos}\:\varphi \\ $$$${OR}={R}\:\mathrm{sin}\:\theta,\:{RA}={R}\:\mathrm{cos}\:\theta \\ $$$$\frac{{RM}}{{RA}}=\frac{{MQ}}{{QD}} \\ $$$$\frac{{RM}}{{RA}}=\frac{{RQ}−{RM}}{{QD}} \\ $$$$\frac{{RM}}{{RA}}=\frac{{OR}+{OQ}−{RM}}{{QD}} \\ $$$$\frac{{RM}}{{R}\:\mathrm{cos}\:\theta}=\frac{{R}\left(\mathrm{sin}\:\theta+\mathrm{sin}\:\varphi\right)−{RM}}{{R}\:\mathrm{cos}\:\varphi} \\ $$$$\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\varphi\right)\:{RM}=\mathrm{cos}\:\theta\:\left(\mathrm{sin}\:\theta+\mathrm{sin}\:\varphi\right){R} \\ $$$$\Rightarrow{RM}=\frac{\mathrm{cos}\:\theta\:\left(\mathrm{sin}\:\theta+\mathrm{sin}\:\varphi\right){R}}{\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\varphi\right)} \\ $$$${OM}={OR}−{RM}={R}\:\mathrm{sin}\:\theta−\frac{\mathrm{cos}\:\theta\:\left(\mathrm{sin}\:\theta+\mathrm{sin}\:\varphi\right){R}}{\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\varphi\right)} \\ $$$${OM}={R}\:\frac{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\varphi−\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\:\mathrm{sin}\:\varphi}{\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\varphi\right)} \\ $$$$\Rightarrow{OM}=\:\frac{\:\mathrm{sin}\:\left(\theta−\varphi\right)\:{R}}{\left(\mathrm{cos}\:\theta+\mathrm{cos}\:\varphi\right)} \\ $$$$ \\ $$$$... \\ $$

Commented by ajfour last updated on 18/Jun/18

Sir, will it be simply A_(max) = R^( 2)   ?

$${Sir},\:{will}\:{it}\:{be}\:{simply}\:{A}_{{max}} =\:{R}^{\:\mathrm{2}} \:\:? \\ $$

Answered by MJS last updated on 19/Jun/18

A and B must be above C and D  A= (((r(√(1−p^2 )))),((rp)) ) B= (((−r(√(1−p^2 )))),((rp)) )  C= (((−r(√(1−q^2 )))),((rq)) ) D= (((r(√(1−q^2 )))),((rq)) )  0≤p<rp  −p<q≤p  (think it over, it′s easy to see why)  ⇒ if C=B=N and D=A=P we get a triangle  with NMP  as base ⇒ area(ABO) must be  maximal. so the problem is reduced to:  find triangle of greatest area in a half circle  ⇒ solution: p=q=((√2)/2), maximal area=(r^2 /2)

$${A}\:\mathrm{and}\:{B}\:\mathrm{must}\:\mathrm{be}\:\mathrm{above}\:{C}\:\mathrm{and}\:{D} \\ $$$${A}=\begin{pmatrix}{{r}\sqrt{\mathrm{1}−{p}^{\mathrm{2}} }}\\{{rp}}\end{pmatrix}\:{B}=\begin{pmatrix}{−{r}\sqrt{\mathrm{1}−{p}^{\mathrm{2}} }}\\{{rp}}\end{pmatrix} \\ $$$${C}=\begin{pmatrix}{−{r}\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }}\\{{rq}}\end{pmatrix}\:{D}=\begin{pmatrix}{{r}\sqrt{\mathrm{1}−{q}^{\mathrm{2}} }}\\{{rq}}\end{pmatrix} \\ $$$$\mathrm{0}\leqslant{p}<{rp} \\ $$$$−{p}<{q}\leqslant{p} \\ $$$$\left(\mathrm{think}\:\mathrm{it}\:\mathrm{over},\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{why}\right) \\ $$$$\Rightarrow\:\mathrm{if}\:{C}={B}={N}\:\mathrm{and}\:{D}={A}={P}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:{NMP}\:\:\mathrm{as}\:\mathrm{base}\:\Rightarrow\:\mathrm{area}\left({ABO}\right)\:\mathrm{must}\:\mathrm{be} \\ $$$$\mathrm{maximal}.\:\mathrm{so}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{reduced}\:\mathrm{to}: \\ $$$$\mathrm{find}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{greatest}\:\mathrm{area}\:\mathrm{in}\:\mathrm{a}\:\mathrm{half}\:\mathrm{circle} \\ $$$$\Rightarrow\:\mathrm{solution}:\:{p}={q}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{maximal}\:\mathrm{area}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com