Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37815 by prof Abdo imad last updated on 17/Jun/18

let I  = ∫_0 ^∞   e^(−x)  cos^2 (π[x])dx and  J = ∫_0 ^∞   e^(−x)  sin^2 (π[x])dx  1) calculate I +J  and I −J  2) find the values of I and J.

$${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:\:{and}\:{I}\:−{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{values}\:{of}\:{I}\:{and}\:{J}. \\ $$

Commented by prof Abdo imad last updated on 18/Jun/18

1) I +J = ∫_0 ^∞   e^(−x) {cos^2 (π[x]) +sin^2 (π[x])}dx  =∫_0 ^∞  e^(−x) dx=[ −e^(−x) ]_0 ^(+∞)  =1  I−J =∫_0 ^∞   e^(−x) { cos^2 (π[x]) −sin^2 (π[x])}dx  = ∫_0 ^∞   e^(−x) cos(2π[x])dx  =Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−x)  cos(2πn) dx  =Σ_(n=0) ^∞  [ −e^(−x) ]_n ^(n+1)   =Σ_(n=0) ^∞ (  e^(−n)  −e^(−(n+1)) )  = (1−e^(−1) ) Σ_(n=0) ^∞  (e^(−1) )^n   =(1−e^(−1) )(1/(1−e^(−1) )) =1 ⇒ I +J =1 and I−J =1 ⇒  I =1 and  J =0 .

$$\left.\mathrm{1}\right)\:{I}\:+{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \left\{{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\:+{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {dx}=\left[\:−{e}^{−{x}} \right]_{\mathrm{0}} ^{+\infty} \:=\mathrm{1} \\ $$$${I}−{J}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \left\{\:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\:−{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {cos}\left(\mathrm{2}\pi\left[{x}\right]\right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−{x}} \:{cos}\left(\mathrm{2}\pi{n}\right)\:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left[\:−{e}^{−{x}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:\:{e}^{−{n}} \:−{e}^{−\left({n}+\mathrm{1}\right)} \right) \\ $$$$=\:\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({e}^{−\mathrm{1}} \right)^{{n}} \\ $$$$=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{1}} }\:=\mathrm{1}\:\Rightarrow\:{I}\:+{J}\:=\mathrm{1}\:{and}\:{I}−{J}\:=\mathrm{1}\:\Rightarrow \\ $$$${I}\:=\mathrm{1}\:{and}\:\:{J}\:=\mathrm{0}\:. \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18

I+J=∫_0 ^∞ e^(−x) {cos^2 (Π[x])+sin^2 (Π[x])}dx  =∫_0 ^∞ e^(−x) dx=∣(e^(−x) /(−1))∣_0 ^∞ =−1((1/e^∞ )−(1/e^0 ))=1  I−J=∫_0 ^∞ e^(−x) cos(2Π[x]) dx  now the value of [x] =0     1>x≥0         [x]=1      2>x≥1         [x]=2     3>x≥2  so for all values     ∞>x≥0  value of cos(2Π[x])=1  so ∫_0 ^1 e^(−x) dx+∫_1 ^2 e^(−x) dx+∫_2 ^3 e^(−x) dx+...infinity  =−1{(e^(−1) −e^(−0) )+(e^(−2) −e^(−1) )+(e^(−3) −e^(−2) )+..  =−1(−e^0    others terms cancelled out...  =1  pls check and comment...

$${I}+{J}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} \left\{{cos}^{\mathrm{2}} \left(\Pi\left[{x}\right]\right)+{sin}^{\mathrm{2}} \left(\Pi\left[{x}\right]\right)\right\}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {dx}=\mid\frac{{e}^{−{x}} }{−\mathrm{1}}\mid_{\mathrm{0}} ^{\infty} =−\mathrm{1}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=\mathrm{1} \\ $$$${I}−{J}=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {cos}\left(\mathrm{2}\Pi\left[{x}\right]\right)\:{dx} \\ $$$${now}\:{the}\:{value}\:{of}\:\left[{x}\right]\:=\mathrm{0}\:\:\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left[{x}\right]=\mathrm{1}\:\:\:\:\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\left[{x}\right]=\mathrm{2}\:\:\:\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$$${so}\:{for}\:{all}\:{values}\:\:\:\:\:\infty>{x}\geqslant\mathrm{0} \\ $$$${value}\:{of}\:{cos}\left(\mathrm{2}\Pi\left[{x}\right]\right)=\mathrm{1} \\ $$$${so}\:\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {dx}+\int_{\mathrm{1}} ^{\mathrm{2}} {e}^{−{x}} {dx}+\int_{\mathrm{2}} ^{\mathrm{3}} {e}^{−{x}} {dx}+...{infinity} \\ $$$$=−\mathrm{1}\left\{\left({e}^{−\mathrm{1}} −{e}^{−\mathrm{0}} \right)+\left({e}^{−\mathrm{2}} −{e}^{−\mathrm{1}} \right)+\left({e}^{−\mathrm{3}} −{e}^{−\mathrm{2}} \right)+..\right. \\ $$$$=−\mathrm{1}\left(−{e}^{\mathrm{0}} \:\:\:{others}\:{terms}\:{cancelled}\:{out}...\right. \\ $$$$=\mathrm{1} \\ $$$${pls}\:{check}\:{and}\:{comment}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com