Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37817 by prof Abdo imad last updated on 17/Jun/18

calculate lim_(n→+∞)  x^n (1−cos((π/x^n ))) with x  from R and x≠0

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \:{x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)\:{with}\:{x} \\ $$$${from}\:{R}\:{and}\:{x}\neq\mathrm{0} \\ $$

Commented by prof Abdo imad last updated on 24/Jun/18

if  ∣x∣<1   lim_(n→+∞) x^n =0 chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→+∞) (1/t)(1 −cos(πt))  =lim_(t→+∞) ((2sin^2 (((πt)/2)))/t) =0 because0≤ sin^2 (((πt)/2)) ≤1   if x>1 lim_(n→+∞) x^n =+∞ chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→0) (1/t)(1−cos(πt))  but 1−cos(πt) ∼ ((π^2 t^2 )/2) ( t →0)⇒  ((1−cos(πt))/t) ∼ ((π^2 t)/2) →0(t→0) so  lim_(n→+∞)  x^n (1−cos((π/x^n )))=0.

$${if}\:\:\mid{x}\mid<\mathrm{1}\:\:\:{lim}_{{n}\rightarrow+\infty} {x}^{{n}} =\mathrm{0}\:{chang}.{x}^{{n}} =\frac{\mathrm{1}}{{t}} \\ $$$${lim}_{{n}\rightarrow+\infty} {x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)={lim}_{{t}\rightarrow+\infty} \frac{\mathrm{1}}{{t}}\left(\mathrm{1}\:−{cos}\left(\pi{t}\right)\right) \\ $$$$={lim}_{{t}\rightarrow+\infty} \frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi{t}}{\mathrm{2}}\right)}{{t}}\:=\mathrm{0}\:{because}\mathrm{0}\leqslant\:{sin}^{\mathrm{2}} \left(\frac{\pi{t}}{\mathrm{2}}\right)\:\leqslant\mathrm{1} \\ $$$$\:{if}\:{x}>\mathrm{1}\:{lim}_{{n}\rightarrow+\infty} {x}^{{n}} =+\infty\:{chang}.{x}^{{n}} =\frac{\mathrm{1}}{{t}} \\ $$$${lim}_{{n}\rightarrow+\infty} {x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)={lim}_{{t}\rightarrow\mathrm{0}} \frac{\mathrm{1}}{{t}}\left(\mathrm{1}−{cos}\left(\pi{t}\right)\right) \\ $$$${but}\:\mathrm{1}−{cos}\left(\pi{t}\right)\:\sim\:\frac{\pi^{\mathrm{2}} {t}^{\mathrm{2}} }{\mathrm{2}}\:\left(\:{t}\:\rightarrow\mathrm{0}\right)\Rightarrow \\ $$$$\frac{\mathrm{1}−{cos}\left(\pi{t}\right)}{{t}}\:\sim\:\frac{\pi^{\mathrm{2}} {t}}{\mathrm{2}}\:\rightarrow\mathrm{0}\left({t}\rightarrow\mathrm{0}\right)\:{so} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{x}^{{n}} \left(\mathrm{1}−{cos}\left(\frac{\pi}{{x}^{{n}} }\right)\right)=\mathrm{0}. \\ $$

Answered by behi83417@gmail.com last updated on 17/Jun/18

(1/x^n )=t,x→+∞⇒t→0  L=lim_(x→0) ((1−cosπt)/t)=lim_(x→0) ((((πt)^2 )/2)/t)=0 . ■

$$\frac{\mathrm{1}}{{x}^{{n}} }={t},{x}\rightarrow+\infty\Rightarrow{t}\rightarrow\mathrm{0} \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−{cos}\pi{t}}{{t}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\left(\pi{t}\right)^{\mathrm{2}} }{\mathrm{2}}}{{t}}=\mathrm{0}\:.\:\blacksquare \\ $$

Commented by math khazana by abdo last updated on 18/Jun/18

sir Behi be carreful n→+∞ not x...

$${sir}\:{Behi}\:{be}\:{carreful}\:{n}\rightarrow+\infty\:{not}\:{x}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com