Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37817 by prof Abdo imad last updated on 17/Jun/18

calculate lim_(n→+∞)  x^n (1−cos((π/x^n ))) with x  from R and x≠0

calculatelimn+xn(1cos(πxn))withxfromRandx0

Commented by prof Abdo imad last updated on 24/Jun/18

if  ∣x∣<1   lim_(n→+∞) x^n =0 chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→+∞) (1/t)(1 −cos(πt))  =lim_(t→+∞) ((2sin^2 (((πt)/2)))/t) =0 because0≤ sin^2 (((πt)/2)) ≤1   if x>1 lim_(n→+∞) x^n =+∞ chang.x^n =(1/t)  lim_(n→+∞) x^n (1−cos((π/x^n )))=lim_(t→0) (1/t)(1−cos(πt))  but 1−cos(πt) ∼ ((π^2 t^2 )/2) ( t →0)⇒  ((1−cos(πt))/t) ∼ ((π^2 t)/2) →0(t→0) so  lim_(n→+∞)  x^n (1−cos((π/x^n )))=0.

ifx∣<1limn+xn=0chang.xn=1tlimn+xn(1cos(πxn))=limt+1t(1cos(πt))=limt+2sin2(πt2)t=0because0sin2(πt2)1ifx>1limn+xn=+chang.xn=1tlimn+xn(1cos(πxn))=limt01t(1cos(πt))but1cos(πt)π2t22(t0)1cos(πt)tπ2t20(t0)solimn+xn(1cos(πxn))=0.

Answered by behi83417@gmail.com last updated on 17/Jun/18

(1/x^n )=t,x→+∞⇒t→0  L=lim_(x→0) ((1−cosπt)/t)=lim_(x→0) ((((πt)^2 )/2)/t)=0 . ■

1xn=t,x+t0L=limx01cosπtt=limx0(πt)22t=0.

Commented by math khazana by abdo last updated on 18/Jun/18

sir Behi be carreful n→+∞ not x...

sirBehibecarrefuln+notx...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com