All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 37818 by prof Abdo imad last updated on 17/Jun/18
let0<u0<1andun+1=1+un2 studytheconvergenceofun
Commented bymath khazana by abdo last updated on 19/Jun/18
letf(x)=1+x2withx⩾0 f(x)=x⇒1+x2=x2⇒1+x=2x2⇒ 2x2−x−1=0Δ=1+8=9 x1=1+34=1andx2=1−34=−12wehave un+1=f(un)andfiscontinue⇒limn→+∞un=1 letfindanotherformofunweput u0=cosα⇒u1=1+cos(α)2=cos(α2) letprovethatun=cos(α2n) relationtrueforn=0 letsupposeun=cos(α2n)⇒ un+1=1+un2=1+cos(α2n)2 =cos(α2n+1).itsnowclearthat limn→+∞un=1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com