Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37820 by prof Abdo imad last updated on 17/Jun/18

let f(x)= (x^2 /(1+x^4 ))  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie  4) calculate ∫_0 ^1 f(x)dx.

letf(x)=x21+x41)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie4)calculate01f(x)dx.

Commented by prof Abdo imad last updated on 18/Jun/18

2) f^((n)) (0)=(((−1)^n n!)/4) e^(−((iπ)/4))   ((−1)^(n+1)  −1) e^(−i((n+1)/4)π)   +(((−1)^n n!)/4) e^((iπ)/4)   ((−1)^(n+1)  −1) e^((i(n+1)π)/4)   =(((−1)^n n!)/4)((−1)^(n+1) −1){ e^(−(((n+2))/4)π)   +e^((i(n+2)π)/4) }  =(((−1)^n n!)/2){(−1)^(n+1) −1)cos((((n+2)π)/4))  ⇒f^((2n)) (0)= (((2n)!)/2)(−2)cos (((2n+2)π)/4)  =−(2n)! cos( ((nπ)/2) +(π/2))=(2n)! sin(((nπ)/2))  and f^((2n+1)) (0)=0  3) we have  f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   ((f^((2n)) (0))/((2n)!)) x^(2n)   =Σ_(n=0) ^∞  sin(((nπ)/2)) x^(2n)   .but sin(((nπ)/2))=0 ifn=2p  and sin(((nπ)/2))=sin((((2p+1)π)/2))=sin(pπ+(π/2))  =(−1)^(p   )   if n=2p+1 ⇒  f(x)= Σ_(n=0) ^∞   (−1)^n  x^(2(2n+1))   =Σ_(n=0) ^∞    (−1)^n  x^(4n+2)   .the radius of convergence  is R=1 .

2)f(n)(0)=(1)nn!4eiπ4((1)n+11)ein+14π+(1)nn!4eiπ4((1)n+11)ei(n+1)π4=(1)nn!4((1)n+11){e(n+2)4π+ei(n+2)π4}=(1)nn!2{(1)n+11)cos((n+2)π4)f(2n)(0)=(2n)!2(2)cos(2n+2)π4=(2n)!cos(nπ2+π2)=(2n)!sin(nπ2)andf(2n+1)(0)=03)wehavef(x)=n=0f(n)(0)n!xn=n=0f(2n)(0)(2n)!x2n=n=0sin(nπ2)x2n.butsin(nπ2)=0ifn=2pandsin(nπ2)=sin((2p+1)π2)=sin(pπ+π2)=(1)pifn=2p+1f(x)=n=0(1)nx2(2n+1)=n=0(1)nx4n+2.theradiusofconvergenceisR=1.

Commented by prof Abdo imad last updated on 18/Jun/18

1) we have f(x)= (x^2 /((x^2 )^2 −i^2 ))  =(x^2 /((x^2 −i)(x^2 +i))) = (x^2 /((x−e^(i(π/4)) )(x+e^((iπ)/4) )(x−e^(−((iπ)/4)) )(x+e^(−((iπ)/4)) )))  = (a/(x−e^((iπ)/4) ))  +(b/(x +e^(i(π/4)) ))  +(c/(x−e^(−((iπ)/4)) )) +(d/(x(1/)+e^(−((iπ)/4)) ))  let p(x)=1+x^4   we have  λ_i = (z_i ^2 /(4z_i ^3 )) = (1/(4 z_i )) ⇒  a=  (1/4) e^(−((iπ)/4))   b =−(1/4)e^(−((iπ)/4))   c = (1/4) e^((iπ)/4)   d=−(1/4)e^((iπ)/4)   ⇒  f(x)=(1/4)e^(−((iπ)/4))    (1/(x−e^((iπ)/4) )) −(1/4)e^(−((iπ)/4))    (1/(x +e^((iπ)/4) ))  +(1/4)e^((iπ)/4)  (1/(x−e^(−((iπ)/4)) )) −(1/4) e^((iπ)/4)  (1/(x+e^(−((iπ)/4)) )) ⇒  f^((n)) (x)=(1/4)e^(−((iπ)/4))   (−1)^n n!{ (1/((x−e^((iπ)/4) )^(n+1) ))−(1/((x+e^(i(π/4)) )^(n+1) ))}  +(1/4)e^((iπ)/4) (−1)^n n!{  (1/((x−e^(−((iπ)/4)) )^(n+1) )) −(1/((x+e^(−((iπ)/4)) )^(n+1) ))}

1)wehavef(x)=x2(x2)2i2=x2(x2i)(x2+i)=x2(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx1+eiπ4letp(x)=1+x4wehaveλi=zi24zi3=14zia=14eiπ4b=14eiπ4c=14eiπ4d=14eiπ4f(x)=14eiπ41xeiπ414eiπ41x+eiπ4+14eiπ41xeiπ414eiπ41x+eiπ4f(n)(x)=14eiπ4(1)nn!{1(xeiπ4)n+11(x+eiπ4)n+1}+14eiπ4(1)nn!{1(xeiπ4)n+11(x+eiπ4)n+1}

Answered by behi83417@gmail.com last updated on 18/Jun/18

f(x)=(1/2).((2x^2 )/((x^2 +i)(x^2 −i)))=(1/2).(((x^2 +i)+(x^2 −i))/((x^2 +i)(x^2 −i)))=  =(1/2)[(1/(x^2 +i))+(1/(x^2 −i))]=(1/2)[(1/((x+i(√i))(x−i(√i))))+  +(1/((x−(√i))(x+(√i))))]=(1/2)[(1/(2i(√i)))[(((x+i(√i))−(x−i(√i)))/((x+i(√i))(x−i(√i))))]+  +[(1/(2(√i)))[(((x+(√i))−(x−(√i)))/((x+(√i))(x−(√i))))]]=^((√i)=a)   =−(a/4)[(1/(x−a^3 ))−(1/(x+a^3 ))+(i/(x−a))−(i/(x+a))]  f^1 (x)=−(a/4)[((−1)/((x−a^3 )^2 ))+(1/((x+a^3 )^2 ))−(i/((x+a)^2 ))+(i/((x−a)^2 ))]  f^n (x)=((n!a(−1)^n )/4)[(1/((x−a^3 )^(n+1) ))−(1/((x−a^3 )^(n+1) ))+  +(i/((x−a)^(n+1) ))−(i/((x−a)^(n+1) ))] .  2)f^n (0)=0  4)∫((x^2 dx)/(1+x^4 ))=−(a/4)[ln((x+a^3 )/(x−a^3 ))+i.ln((x+a)/(x−a))]  F(1)=−(a/4)[ln((1+a^3 )/(1−a^3 ))+i.ln((1+a)/(1−a))]=  −((√i)/4)[i(√i)+(√i)−i+i(i(√i)+(√i)+i)]=  =−((√i)/4)[i(√i)+(√i)−i−(√i)+i(√i)−1]=  =−((√i)/4)[2i(√i)−i−1]=−(1/4)(−2−i(√i)−(√i))  F(0)=−(a/4)[ln(−1)+i.ln(−1)]=  =−(a/4)(((iπ)/2)+i.((iπ)/2))=−((π(√i))/8)(i−1)=((π(√i))/8)(1−i).  I=F(1)−F(0)=(1/8)[4+(i+1)(√i)+π(√i)(i−1)].  i=cos(π/2)+isin(π/2)=e^((iπ)/2) ⇒(√i)=e^((iπ)/4)   ((1+a^3 )/(1−a^3 ))=(((1+a^3 )^2 )/(1−a^6 ))=(((1+2i(√i)−i))/(1+i)).((1−i)/(1−i))=  =(1/2)(1−i+2i(√i)+2(√i)−i−1)=i(√i)+(√i)−i  ((1+a)/(1−a))=(((1+a)^2 )/(1−a^2 ))=((1+2(√i)+i)/(1−i)).((1+i)/(1+i))=  =(1/2)(1+i+2(√i)+2i(√i)+i−1)=i(√i)+(√i)+i

f(x)=12.2x2(x2+i)(x2i)=12.(x2+i)+(x2i)(x2+i)(x2i)==12[1x2+i+1x2i]=12[1(x+ii)(xii)++1(xi)(x+i)]=12[12ii[(x+ii)(xii)(x+ii)(xii)]++[12i[(x+i)(xi)(x+i)(xi)]]=i=a=a4[1xa31x+a3+ixaix+a]f1(x)=a4[1(xa3)2+1(x+a3)2i(x+a)2+i(xa)2]fn(x)=n!a(1)n4[1(xa3)n+11(xa3)n+1++i(xa)n+1i(xa)n+1].2)fn(0)=04)x2dx1+x4=a4[lnx+a3xa3+i.lnx+axa]F(1)=a4[ln1+a31a3+i.ln1+a1a]=i4[ii+ii+i(ii+i+i)]==i4[ii+iii+ii1]==i4[2iii1]=14(2iii)F(0)=a4[ln(1)+i.ln(1)]==a4(iπ2+i.iπ2)=πi8(i1)=πi8(1i).I=F(1)F(0)=18[4+(i+1)i+πi(i1)].i=cosπ2+isinπ2=eiπ2i=eiπ41+a31a3=(1+a3)21a6=(1+2iii)1+i.1i1i==12(1i+2ii+2ii1)=ii+ii1+a1a=(1+a)21a2=1+2i+i1i.1+i1+i==12(1+i+2i+2ii+i1)=ii+i+i

Commented by math khazana by abdo last updated on 18/Jun/18

sir Behi  if  f(x)= (1/(x+a))   a from C we have  f^((n)) (x)= (((−1)^n n!)/((x+a)^(n+1) ))  !

sirBehiiff(x)=1x+aafromCwehavef(n)(x)=(1)nn!(x+a)n+1!

Commented by behi83417@gmail.com last updated on 18/Jun/18

corrected! thanks.

corrected!thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com