Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 37840 by ajfour last updated on 18/Jun/18

f(θ,φ)=((cos φ[cos θ tan (((θ+φ)/2))−sin θ]^2 )/(cos φtan (((θ+φ)/2))+sin φ))   φ ∈ (0,(π/2)) , θ ∈ (−(π/2), (π/2));  find maximum f(θ,φ).

$${f}\left(\theta,\phi\right)=\frac{\mathrm{cos}\:\phi\left[\mathrm{cos}\:\theta\:\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)−\mathrm{sin}\:\theta\right]^{\mathrm{2}} }{\mathrm{cos}\:\phi\mathrm{tan}\:\left(\frac{\theta+\phi}{\mathrm{2}}\right)+\mathrm{sin}\:\phi} \\ $$$$\:\phi\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:,\:\theta\:\in\:\left(−\frac{\pi}{\mathrm{2}},\:\frac{\pi}{\mathrm{2}}\right); \\ $$$${find}\:{maximum}\:{f}\left(\theta,\phi\right). \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18

f(θ,φ)=(N_r /D_r )  N_r =cosφ[cosθtan(((θ+φ)/2))−sinθ]^2   =cosφ[((cosθsin(((θ+φ)/2))−sinθcos(((θ+φ)/2)))/(cos(((θ+∅)/2))))]^2   =cosφ[((sin(((φ−θ)/2)))/(cos(((θ+φ)/2))))]^2   D_r =cosφtan(((θ+φ)/2))+sinφ  =((cosφ.sin(((θ+φ)/2))+cos(((θ+φ)/2))sinφ)/(cos(((θ+∅)/2))))  =((sin(((θ+3φ)/2)))/(cos(((θ+φ)/2))))  f(θ,φ)=((cosφ[sin(((φ−θ)/2))]^2 ×cos(((θ+φ)/2)))/(sin(((θ+3φ)/2))×[cos(((θ+φ)/2)]^2 ))  =((cosφ[sin(((φ−θ)/2))]^2 )/(sin(((θ+3φ)/2))cos(((θ+φ)/2))))     =((2cosφ[sin(((φ−θ)/2))]^2 )/(2sin(φ+((θ+∅)/2))cos(((θ+φ)/2))))=((2cos0[sin^2 (−(Π/4))})/(2sin(Π/4)×cos(Π/4)))=1  wait... φ (0,(Π/2))    θ(((−Π)/2),(Π/2))  max N_r  when φ=0   θ=(Π/2)

$${f}\left(\theta,\phi\right)=\frac{{N}_{{r}} }{{D}_{{r}} } \\ $$$${N}_{{r}} ={cos}\phi\left[{cos}\theta{tan}\left(\frac{\theta+\phi}{\mathrm{2}}\right)−{sin}\theta\right]^{\mathrm{2}} \\ $$$$={cos}\phi\left[\frac{{cos}\theta{sin}\left(\frac{\theta+\phi}{\mathrm{2}}\right)−{sin}\theta{cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)}{{cos}\left(\frac{\theta+\emptyset}{\mathrm{2}}\right)}\right]^{\mathrm{2}} \\ $$$$={cos}\phi\left[\frac{{sin}\left(\frac{\phi−\theta}{\mathrm{2}}\right)}{{cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)}\right]^{\mathrm{2}} \\ $$$${D}_{{r}} ={cos}\phi{tan}\left(\frac{\theta+\phi}{\mathrm{2}}\right)+{sin}\phi \\ $$$$=\frac{{cos}\phi.{sin}\left(\frac{\theta+\phi}{\mathrm{2}}\right)+{cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right){sin}\phi}{{cos}\left(\frac{\theta+\emptyset}{\mathrm{2}}\right)} \\ $$$$=\frac{{sin}\left(\frac{\theta+\mathrm{3}\phi}{\mathrm{2}}\right)}{{cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)} \\ $$$${f}\left(\theta,\phi\right)=\frac{{cos}\phi\left[{sin}\left(\frac{\phi−\theta}{\mathrm{2}}\right)\right]^{\mathrm{2}} ×{cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)}{{sin}\left(\frac{\theta+\mathrm{3}\phi}{\mathrm{2}}\right)×\left[{cos}\frac{\left(\theta+\phi\right.}{\mathrm{2}}\right]^{\mathrm{2}} } \\ $$$$=\frac{{cos}\phi\left[{sin}\left(\frac{\phi−\theta}{\mathrm{2}}\right)\right]^{\mathrm{2}} }{{sin}\left(\frac{\theta+\mathrm{3}\phi}{\mathrm{2}}\right){cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)}\:\:\: \\ $$$$=\frac{\mathrm{2}{cos}\phi\left[{sin}\left(\frac{\phi−\theta}{\mathrm{2}}\right)\right]^{\mathrm{2}} }{\mathrm{2}{sin}\left(\phi+\frac{\theta+\emptyset}{\mathrm{2}}\right){cos}\left(\frac{\theta+\phi}{\mathrm{2}}\right)}=\frac{\mathrm{2}{cos}\mathrm{0}\left[{sin}^{\mathrm{2}} \left(−\frac{\Pi}{\mathrm{4}}\right)\right\}}{\mathrm{2}{sin}\frac{\Pi}{\mathrm{4}}×{cos}\frac{\Pi}{\mathrm{4}}}=\mathrm{1} \\ $$$${wait}...\:\phi\:\left(\mathrm{0},\frac{\Pi}{\mathrm{2}}\right)\:\:\:\:\theta\left(\frac{−\Pi}{\mathrm{2}},\frac{\Pi}{\mathrm{2}}\right) \\ $$$${max}\:{N}_{{r}} \:{when}\:\phi=\mathrm{0}\:\:\:\theta=\frac{\Pi}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 18/Jun/18

i should have given θ,φ ∈[−(π/2),(π/2)].  Thank you Tanmay Sir.  Your answer is indeed right,  i believe.

$${i}\:{should}\:{have}\:{given}\:\theta,\phi\:\in\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right]. \\ $$$${Thank}\:{you}\:{Tanmay}\:{Sir}. \\ $$$${Your}\:{answer}\:{is}\:{indeed}\:{right}, \\ $$$${i}\:{believe}.\: \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18

thanx got moral boost to face the challenges

$${thanx}\:{got}\:{moral}\:{boost}\:{to}\:{face}\:{the}\:{challenges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com