Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 37862 by ajfour last updated on 18/Jun/18

Commented by MrW3 last updated on 18/Jun/18

yes, (√(r^2 +q^2 ))<2a.

$${yes},\:\sqrt{{r}^{\mathrm{2}} +{q}^{\mathrm{2}} }<\mathrm{2}{a}. \\ $$

Commented by ajfour last updated on 18/Jun/18

(√(r^2 +q^2 )) < 2b .

$$\sqrt{{r}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:<\:\mathrm{2}{b}\:. \\ $$

Commented by ajfour last updated on 18/Jun/18

With the help of some app, can  anyone share and show us the  locus trajectory, please ?

$${With}\:{the}\:{help}\:{of}\:{some}\:{app},\:{can} \\ $$$${anyone}\:{share}\:{and}\:{show}\:{us}\:{the} \\ $$$${locus}\:{trajectory},\:{please}\:? \\ $$

Commented by Rio Mike last updated on 18/Jun/18

sir ajfour what app do you   guys use in drawing the shapes  you always post?

$${sir}\:{ajfour}\:{what}\:{app}\:{do}\:{you}\: \\ $$$${guys}\:{use}\:{in}\:{drawing}\:{the}\:{shapes} \\ $$$${you}\:{always}\:{post}? \\ $$

Commented by ajfour last updated on 18/Jun/18

i do so using Lekh Diagram.

$${i}\:{do}\:{so}\:{using}\:{Lekh}\:{Diagram}. \\ $$

Commented by MrW3 last updated on 18/Jun/18

it should be (√(r^2 +q^2 )) > 2b .

$${it}\:{should}\:{be}\:\sqrt{{r}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:>\:\mathrm{2}{b}\:. \\ $$

Commented by ajfour last updated on 18/Jun/18

only (√(r^2 +q^2 )) < 2a is necessary,  dont you think so, Sir ?

$${only}\:\sqrt{{r}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:<\:\mathrm{2}{a}\:{is}\:{necessary}, \\ $$$${dont}\:{you}\:{think}\:{so},\:{Sir}\:? \\ $$

Answered by ajfour last updated on 18/Jun/18

let P ≡ (x,y)  and   x_Q  = x+rcos θ             y_Q  = y+rsin θ  then    x_R = x−qsin θ                 y_R  = y+qcos θ  As Q and R lie on ellipse , so     (((x+rcos θ)^2 )/a^2 )+(((y+rsin θ)^2 )/b^2 )=1   (((x−qsin θ)^2 )/a^2 )+(((y+qcos θ)^2 )/b^2 )=1  We now need to eliminate θ and  thus relate x, y .  ⇒ q, r are roots of eq.      (((x−zsin θ)^2 )/a^2 )+(((y+zcos θ)^2 )/b^2 )=1  ⇒     z^2 (a^2 cos^2 θ+b^2 sin^2 θ)        +2z(a^2 ycos θ−b^2 xsin θ)        +b^2 x^2 +a^2 y^2 −a^2 b^2   = 0  as q, r are roots of the eq.  q+r = −((2(a^2 ycos^2 θ−b^2 xsin^2 θ))/(a^2 cos^2 θ+b^2 sin^2 θ))   qr = ((b^2 x^2 +a^2 y^2 −a^2 b^2 )/(a^2 cos^2 θ+b^2 sin^2 θ))    ....(i)  let   tan^2 θ = t  ⇒ q+r=((−2(a^2 y−b^2 xt))/(a^2 +b^2 t))  or   t = ((a^2 (q+r)+2a^2 y)/(b^2 (2x−q−r)))  substituting in (i)    qr = (((b^2 x^2 +a^2 y^2 −a^2 b^2 )[2b^2 x+2a^2 y+(a^2 −b^2 )(q+r)])/(a^2 b^2 (2x−q−r)+a^2 b^2 (2y+q+r)))  ⇒  2a^2 b^2 qr(x+y)=(b^2 x^2 +a^2 y^2 −a^2 b^2 )×             [2b^2 x+2a^2 y+(a^2 −b^2 )(q+r)] .

$${let}\:{P}\:\equiv\:\left({x},{y}\right) \\ $$$${and}\:\:\:{x}_{{Q}} \:=\:{x}+{r}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}_{{Q}} \:=\:{y}+{r}\mathrm{sin}\:\theta \\ $$$${then}\:\:\:\:{x}_{{R}} =\:{x}−{q}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{{R}} \:=\:{y}+{q}\mathrm{cos}\:\theta \\ $$$${As}\:{Q}\:{and}\:{R}\:{lie}\:{on}\:{ellipse}\:,\:{so} \\ $$$$\:\:\:\frac{\left({x}+{r}\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}+{r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\:\frac{\left({x}−{q}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}+{q}\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${We}\:{now}\:{need}\:{to}\:{eliminate}\:\theta\:{and} \\ $$$${thus}\:{relate}\:{x},\:{y}\:. \\ $$$$\Rightarrow\:{q},\:{r}\:{are}\:{roots}\:{of}\:{eq}. \\ $$$$\:\:\:\:\frac{\left({x}−{z}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}+{z}\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\:{z}^{\mathrm{2}} \left({a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:\:+\mathrm{2}{z}\left({a}^{\mathrm{2}} {y}\mathrm{cos}\:\theta−{b}^{\mathrm{2}} {x}\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:\:\:+{b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\:=\:\mathrm{0} \\ $$$${as}\:{q},\:{r}\:{are}\:{roots}\:{of}\:{the}\:{eq}. \\ $$$${q}+{r}\:=\:−\frac{\mathrm{2}\left({a}^{\mathrm{2}} {y}\mathrm{cos}\:^{\mathrm{2}} \theta−{b}^{\mathrm{2}} {x}\mathrm{sin}\:^{\mathrm{2}} \theta\right)}{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\:{qr}\:=\:\frac{{b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}\:\:\:\:....\left({i}\right) \\ $$$${let}\:\:\:\mathrm{tan}\:^{\mathrm{2}} \theta\:=\:{t} \\ $$$$\Rightarrow\:{q}+{r}=\frac{−\mathrm{2}\left({a}^{\mathrm{2}} {y}−{b}^{\mathrm{2}} {xt}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} {t}} \\ $$$${or}\:\:\:{t}\:=\:\frac{{a}^{\mathrm{2}} \left({q}+{r}\right)+\mathrm{2}{a}^{\mathrm{2}} {y}}{{b}^{\mathrm{2}} \left(\mathrm{2}{x}−{q}−{r}\right)} \\ $$$${substituting}\:{in}\:\left({i}\right) \\ $$$$\:\:{qr}\:=\:\frac{\left({b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right)\left[\mathrm{2}{b}^{\mathrm{2}} {x}+\mathrm{2}{a}^{\mathrm{2}} {y}+\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\left({q}+{r}\right)\right]}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{2}{x}−{q}−{r}\right)+{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{2}{y}+{q}+{r}\right)} \\ $$$$\Rightarrow\:\:\mathrm{2}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{qr}}\left(\boldsymbol{{x}}+\boldsymbol{{y}}\right)=\left(\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} −\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}^{\mathrm{2}} \right)× \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{x}}+\mathrm{2}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{y}}+\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} \right)\left(\boldsymbol{{q}}+\boldsymbol{{r}}\right)\right]\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com