Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37891 by abdo mathsup 649 cc last updated on 19/Jun/18

calculate B_n = Σ_(k=0) ^n  (−1)^k (2k^2  +1) interms of n.

$${calculate}\:{B}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \left(\mathrm{2}{k}^{\mathrm{2}} \:+\mathrm{1}\right)\:{interms}\:{of}\:{n}. \\ $$

Commented by prof Abdo imad last updated on 24/Jun/18

B_n = 2Σ_(k=0) ^n k^2 (−1)^k  +Σ_(k=0) ^n (−1)^k   let p(x)=Σ_(k=0) ^n  x^k    with x≠1  p^′ (x)=Σ_(k=1) ^n k x^(k−1)  ⇒ x p^′ (x)=Σ_(k=1) ^n  kx^k  ⇒  Σ_(k=1) ^n  k^2 x^(k−1) =p^′ (x) +xp′′(x) ⇒  Σ_(k=1) ^n k^2 x^k =xp^′ (x)+x^2 p′′(x) but  p(x)=((x^(n+1) −1)/(x−1)) ⇒p^′ (x)=((n x^(n+1)  −(n+1)x^n +1)/((x−1)^2 ))  p^(′′) (x)=(((n(n+1)x^n −n(n+1)x^(n−1) )(x−1)^2  −2(x−1)(nx^(n+1) −(n+1)x^n +1))/((x−1)^4 ))  =(((x−1)n(n+1)(x^n −x^(n−1) )−2(nx^(n+1) −(n+1)x^n  +1))/((x−1)^3 ))  Σ_(k=1) ^n  k^2 (−1)^k  =−p^′ (−1) +p^(′′) (−1)  =−((n(−1)^(n+1) −(n+1)(−1)^n +1)/4) +((−2n(n+1)((−1)^n −(−1)^(n−1) )−2{n(−1)^(n+1) −(n+1)(−1)^n +1})/(−8))  also Σ_(k=0) ^n (−1)^k =  ((1−(−1)^(n+1) )/2)  so the value of S is determined.

$${B}_{{n}} =\:\mathrm{2}\sum_{{k}=\mathrm{0}} ^{{n}} {k}^{\mathrm{2}} \left(−\mathrm{1}\right)^{{k}} \:+\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \\ $$$${let}\:{p}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{x}^{{k}} \:\:\:{with}\:{x}\neq\mathrm{1} \\ $$$${p}^{'} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} {k}\:{x}^{{k}−\mathrm{1}} \:\Rightarrow\:{x}\:{p}^{'} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:{kx}^{{k}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{2}} {x}^{{k}−\mathrm{1}} ={p}^{'} \left({x}\right)\:+{xp}''\left({x}\right)\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} {x}^{{k}} ={xp}^{'} \left({x}\right)+{x}^{\mathrm{2}} {p}''\left({x}\right)\:{but} \\ $$$${p}\left({x}\right)=\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\:\Rightarrow{p}^{'} \left({x}\right)=\frac{{n}\:{x}^{{n}+\mathrm{1}} \:−\left({n}+\mathrm{1}\right){x}^{{n}} +\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${p}^{''} \left({x}\right)=\frac{\left({n}\left({n}+\mathrm{1}\right){x}^{{n}} −{n}\left({n}+\mathrm{1}\right){x}^{{n}−\mathrm{1}} \right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{2}\left({x}−\mathrm{1}\right)\left({nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} +\mathrm{1}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$=\frac{\left({x}−\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)\left({x}^{{n}} −{x}^{{n}−\mathrm{1}} \right)−\mathrm{2}\left({nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{2}} \left(−\mathrm{1}\right)^{{k}} \:=−{p}^{'} \left(−\mathrm{1}\right)\:+{p}^{''} \left(−\mathrm{1}\right) \\ $$$$=−\frac{{n}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{n}} +\mathrm{1}}{\mathrm{4}}\:+\frac{−\mathrm{2}{n}\left({n}+\mathrm{1}\right)\left(\left(−\mathrm{1}\right)^{{n}} −\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \right)−\mathrm{2}\left\{{n}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right)\left(−\mathrm{1}\right)^{{n}} +\mathrm{1}\right\}}{−\mathrm{8}} \\ $$$${also}\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} =\:\:\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}} \\ $$$${so}\:{the}\:{value}\:{of}\:{S}\:{is}\:{determined}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com