Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37896 by abdo mathsup 649 cc last updated on 19/Jun/18

let I_n = ∫_0 ^n     (((−1)^([x]) )/((2x+1)^2 ))dx  1) calculate I_n   interms of n  2) find lim_(n→+∞)  I_n

$${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{{n}} \:\:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \\ $$

Commented by prof Abdo imad last updated on 19/Jun/18

1) I_n  = Σ_(k=0) ^(n−1)   ∫_k ^(k+1)    (((−1)^k )/((2x+1)^2 ))dx  =Σ_(k=0) ^(n−1) (−1)^k [−(1/(2(2x+1)))]_k ^(k+1)   =−(1/2) Σ_(k=0) ^(n−1) (−1)^k {   (1/(2k+3)) −(1/(2k+1))}  =−(1/2)Σ_(k=0) ^(n−1)   (((−1)^k )/(2k+3))  +(1/2)Σ_(k=0) ^(n−1)  (((−1)^k )/(2k+1)) but  Σ_(k=0) ^(n−1)   (((−1)^k )/(2k+3)) = (1/3) +Σ_(k=1) ^(n−1)    (((−1)^k )/(2k+3))  =_(k−1=p)   (1/3) +Σ_(p=0) ^(n−2)    (((−1)^(p+1) )/(2p+1))  =(1/3) − Σ_(k=0) ^(n−2)    (((−1)^k )/(2k+1)) ⇒  I_n  = −(1/6)  +(1/2) Σ_(k=0) ^(n−2)   (((−1)^k )/(2k+1))  +(1/2)Σ_(k=0) ^(n−2) (((−1)^k )/(2k+1)) +(((−1)^(n−1) )/(2n−1))  I_n =−(1/6) +(((−1)^(n−1) )/(2n−1))  +Σ_(k=0) ^(n−2)     (((−1)^k )/(2k+1))  2)lim_(n→+∞)   I_n =−(1/6) +Σ_(k=0) ^∞  (((−1)^k )/(2k+1))  =(π/4) −(1/6) .

$$\left.\mathrm{1}\right)\:{I}_{{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \left[−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}{x}+\mathrm{1}\right)}\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \left\{\:\:\:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{but} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{3}} \\ $$$$=_{{k}−\mathrm{1}={p}} \:\:\frac{\mathrm{1}}{\mathrm{3}}\:+\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{2}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{p}+\mathrm{1}} }{\mathrm{2}{p}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\:−\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{2}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:\Rightarrow \\ $$$${I}_{{n}} \:=\:−\frac{\mathrm{1}}{\mathrm{6}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{2}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{2}} \frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:+\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}} \\ $$$${I}_{{n}} =−\frac{\mathrm{1}}{\mathrm{6}}\:+\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\:+\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{2}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right){lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} =−\frac{\mathrm{1}}{\mathrm{6}}\:+\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{6}}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

[x]=0   1>x≥0  [x]=1  2>x≥1  [x]=2  3>x≥2  thus the value of (−1)^([x])  is either +1 or −1  ∫_0 ^1 (1/((2x+1)^2 ))dx+∫_1 ^2 ((−1)/((2x+1)^2 ))+∫_2 ^3 (1/((2x+1)^2 ))+...  +∫_(n−1) ^n (((−1)^(n−1) )/((2x+1)^2 ))dx  contd

$$\left[{x}\right]=\mathrm{0}\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$$$\left[{x}\right]=\mathrm{1}\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$$$\left[{x}\right]=\mathrm{2}\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$$${thus}\:{the}\:{value}\:{of}\:\left(−\mathrm{1}\right)^{\left[{x}\right]} \:{is}\:{either}\:+\mathrm{1}\:{or}\:−\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} \frac{−\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }+\int_{\mathrm{2}} ^{\mathrm{3}} \frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }+... \\ $$$$+\int_{{n}−\mathrm{1}} ^{{n}} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${contd} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com