Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37898 by abdo mathsup 649 cc last updated on 19/Jun/18

calculate f(λ) = ∫_0 ^(+∞)   e^(−λx)  cos(π[x])dx  withλ>0

$${calculate}\:{f}\left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\lambda{x}} \:{cos}\left(\pi\left[{x}\right]\right){dx} \\ $$ $${with}\lambda>\mathrm{0} \\ $$

Commented byprof Abdo imad last updated on 19/Jun/18

f(λ)=Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−λx)  cos(nπ)dx  =Σ_(n=0) ^∞ (−1)^n   ∫_n ^(n+1)  e^(−λx) dx  =Σ_(n=0) ^∞  (−1)^n [−(1/λ) e^(−λx) ]_n ^(n+1)   =(1/λ)Σ_(n=0) ^∞  (−1)^(n+1)  ( e^(−λ(n+1))  −e^(−λn) )  =(1/λ)Σ_(n=0) ^∞   (−1)^n  e^(−λn)  −(1/λ)Σ_(n=0) ^∞  (−1)^n  e^(−λ(n+1))   =(1/λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   −(e^(−λ) /λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   =((1−e^(−λ) )/λ)  (1/(1+e^(−λ) )) ⇒  f(λ) = ((1−e^(−λ) )/(λ(1+e^(−λ) )))

$${f}\left(\lambda\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} \:{cos}\left({n}\pi\right){dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:{e}^{−\lambda{x}} {dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \left[−\frac{\mathrm{1}}{\lambda}\:{e}^{−\lambda{x}} \right]_{{n}} ^{{n}+\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\left(\:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \:−{e}^{−\lambda{n}} \right) \\ $$ $$=\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda{n}} \:−\frac{\mathrm{1}}{\lambda}\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\lambda\left({n}+\mathrm{1}\right)} \\ $$ $$=\frac{\mathrm{1}}{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \:\:−\frac{{e}^{−\lambda} }{\lambda}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{e}^{−\lambda} \right)^{{n}} \\ $$ $$=\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda}\:\:\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\lambda} }\:\Rightarrow \\ $$ $${f}\left(\lambda\right)\:=\:\frac{\mathrm{1}−{e}^{−\lambda} }{\lambda\left(\mathrm{1}+{e}^{−\lambda} \right)} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

[x]=0    1>x≥0  [x]=1   2>x≥1  [x]=2  3>x≥2    thus the value of Π[x] is intregal multiple of  Π...hence value of cos(Π[x]) oscillates  eitther +1 or −1  so the given intregal has two value  1)∫_0 ^(+∞) e^(−λx) ×1×dx  =∣(e^(−λx) /(−λ))∣_0 ^∞   =((−1)/λ)((1/e^∞ )−(1/e^0 ))=(1/λ)  2)∫_0 ^(+∞) e^(−λx) ×−1×dx  =−1×∣(e^(−λx) /(−λ))∣_0 ^∞  =(1/λ)((1/e^∞ )−(1/e^0 ))=−(1/λ)

$$\left[{x}\right]=\mathrm{0}\:\:\:\:\mathrm{1}>{x}\geqslant\mathrm{0} \\ $$ $$\left[{x}\right]=\mathrm{1}\:\:\:\mathrm{2}>{x}\geqslant\mathrm{1} \\ $$ $$\left[{x}\right]=\mathrm{2}\:\:\mathrm{3}>{x}\geqslant\mathrm{2} \\ $$ $$ \\ $$ $${thus}\:{the}\:{value}\:{of}\:\Pi\left[{x}\right]\:{is}\:{intregal}\:{multiple}\:{of} \\ $$ $$\Pi...{hence}\:{value}\:{of}\:{cos}\left(\Pi\left[{x}\right]\right)\:{oscillates} \\ $$ $${eitther}\:+\mathrm{1}\:{or}\:−\mathrm{1} \\ $$ $${so}\:{the}\:{given}\:{intregal}\:{has}\:{two}\:{value} \\ $$ $$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×\mathrm{1}×{dx} \\ $$ $$=\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \\ $$ $$=\frac{−\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=\frac{\mathrm{1}}{\lambda} \\ $$ $$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−\lambda{x}} ×−\mathrm{1}×{dx} \\ $$ $$=−\mathrm{1}×\mid\frac{{e}^{−\lambda{x}} }{−\lambda}\mid_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{\lambda}\left(\frac{\mathrm{1}}{{e}^{\infty} }−\frac{\mathrm{1}}{{e}^{\mathrm{0}} }\right)=−\frac{\mathrm{1}}{\lambda} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com