Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37902 by math khazana by abdo last updated on 19/Jun/18

ind the value of f(a)  =∫_0 ^(+∞)    (dx/(x^2  +(√(a^2  +x^2 )))) dx  witha>0  2)calculate f^′ (a) .

indthevalueoff(a)=0+dxx2+a2+x2dx witha>0 2)calculatef(a).

Commented byprof Abdo imad last updated on 19/Jun/18

changement x=a tan t give  f(a) = ∫_0 ^(π/2)      (1/(a^2 tan^2 t  + a cost)) a(1+tan^2 t)dt  = ∫_0 ^(π/2)     ((1+tan^2 t)/(a tant +cost)) dt  chang. tan((t/2))=u  give  f(a) = ∫_0 ^1     ((1+( ((2u)/(1−u^2 )))^2 )/(a ((2u)/(1−u^2 ))  +((1−u^2 )/(1+u^2 ))))  ((2du)/(1+u^2 ))  = 2 ∫_0 ^1        (((1−u^2 )^2  +4u^2 )/((1+u^2 )(1−u^2 )^2 { ((2au)/(1−u^2 )) +((1−u^2 )/(1+u^2 ))}))du  = 2 ∫_0 ^1      (((1−u^2 )^2  +4u^2 )/(2au(1−u^4 ) +(1−u^2 )^3 )) du  =2 ∫_0 ^1    (((1+u^2 )^2 )/(2au −2au^5   −(u^(6 )  +3u^4  −3u^2 −1)))du  =2∫_0 ^1      ((u^4  +2u^(2 )  +1)/(−u^6  −2au^5  +3u^2  +2au +1))du  =−2 ∫_0 ^1     ((u^4  +2u^2  +1)/(u^6  +2au^5  −3u^2  −2au −1))du...be  continued...

changementx=atantgive f(a)=0π21a2tan2t+acosta(1+tan2t)dt =0π21+tan2tatant+costdtchang.tan(t2)=u give f(a)=011+(2u1u2)2a2u1u2+1u21+u22du1+u2 =201(1u2)2+4u2(1+u2)(1u2)2{2au1u2+1u21+u2}du =201(1u2)2+4u22au(1u4)+(1u2)3du =201(1+u2)22au2au5(u6+3u43u21)du =201u4+2u2+1u62au5+3u2+2au+1du =201u4+2u2+1u6+2au53u22au1du...be continued...

Answered by ajfour last updated on 19/Jun/18

let x=atan θ    f(a)=∫_0 ^(  π/2) ((sec^2 θdθ)/(atan^2 θ+sec θ))       =∫_0 ^(  π/2) (dθ/(asin^2 θ+cos θ))      let tan (θ/2)=t       =∫_0 ^(  1) (((2dt)/(1+t^2 ))/(a(((2t)/(1+t^2 )))^2 +((1−t^2 )/(1+t^2 ))))      = ∫_0 ^(  1) ((2(1+t^2 )dt)/(4at^2 +1−t^4 ))  let   t^4 −4at^2 +1=0  ⇒    t^2 =((4a±(√(16a^2 −4)))/2)      say   α, β  = 2a±(√(4a^2 −1))  f(a)=−∫_0 ^(  1) ((1+t^2 )/((t^2 −α)(t^2 −β)))dt     =−((α+1)/(α−β))∫_0 ^(  1) (dt/(t^2 −α))+((1+β)/(α−β))∫_0 ^(  1) (dt/(t^2 −β))    =−((α+1)/(α−β))×(1/(2(√α)))ln ∣((t−(√α))/(t+(√α)))∣_0 ^1                     +((1+β)/(α−β))×(1/(2(√β)))ln ∣((t−(√β))/(t+(√β)))∣_0 ^1        not satisfactory, i guess !

letx=atanθ f(a)=0π/2sec2θdθatan2θ+secθ =0π/2dθasin2θ+cosθ lettanθ2=t =012dt1+t2a(2t1+t2)2+1t21+t2 =012(1+t2)dt4at2+1t4 lett44at2+1=0 t2=4a±16a242 sayα,β=2a±4a21 f(a)=011+t2(t2α)(t2β)dt =α+1αβ01dtt2α+1+βαβ01dtt2β =α+1αβ×12αlntαt+α01 +1+βαβ×12βlntβt+β01 notsatisfactory,iguess!

Commented bytanmay.chaudhury50@gmail.com last updated on 19/Jun/18

∫_0 ^1 ((2((1/t^2 )+1)dt)/(4a+(1/t^2 )−t^2 ))  ∫_0 ^1 ((2d(t−(1/t)))/(4a−(t−(1/t))(t+(1/t))))  2∫_0 ^1 ((d(t−(1/t)))/(4a−(t−(1/t))(√((t−(1/t))^2 +4))))  2∫_(−∞) ^0 (dk/(4a−k(√(k^2 +4))))  contd

012(1t2+1)dt4a+1t2t2 012d(t1t)4a(t1t)(t+1t) 201d(t1t)4a(t1t)(t1t)2+4 20dk4akk2+4 contd

Answered by MJS last updated on 19/Jun/18

this is the method:    ∫(dx/(x^2 +(√(x^2 +a^2 ))))=∫(x^2 /(x^4 −x^2 −a^2 ))dx−∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx       ∫(x^2 /(x^4 −x^2 −a^2 ))dx=       =Σ_(i=1) ^4 ∫(N_i /(x−r_i ))dx=Σ_(i=1) ^4 N_i ln∣x−r_i ∣         ∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx=            [t=(x/(√(x^2 +a^2 ))) → dx=(dt/a^2 )(√((x^2 +a^2 )^3 ))]       =(1/a^2 )∫(dt/(t^4 +(1/a^2 )t^2 −(1/a^2 )))=       =(N_5 /a^2 )(∫(dt/(t−r_5 ))−∫(dt/(t+r_5 )))+(N_6 /a^2 )∫(dt/(t^2 +r_6 ))=            [r_6 >0]       =(N_5 /a^2 )ln∣((t−r_5 )/(t+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (t/(√r_6 ))=       =(N_5 /a^2 )ln∣(((x/(√(x^2 +a^2 )))−r_5 )/((x/(√(x^2 +a^2 )))+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (x/(√(r_6 (x^2 +a^2 ))))

thisisthemethod: dxx2+x2+a2=x2x4x2a2dxx2+a2x4x2a2dx x2x4x2a2dx= =4i=1Nixridx=4i=1Nilnxri x2+a2x4x2a2dx= [t=xx2+a2dx=dta2(x2+a2)3] =1a2dtt4+1a2t21a2= =N5a2(dttr5dtt+r5)+N6a2dtt2+r6= [r6>0] =N5a2lntr5t+r5+N6a2r6arctantr6= =N5a2lnxx2+a2r5xx2+a2+r5+N6a2r6arctanxr6(x2+a2)

Commented byMJS last updated on 20/Jun/18

r_1 =−((√2)/2)(√(1−(√(4a^2 +1))))  r_2 =−((√2)/2)(√(1+(√(4a^2 +1))))  r_3 =((√2)/2)(√(1−(√(4a^2 +1))))  r_4 =((√2)/2)(√(1+(√(4a^2 +1))))  r_5 =((√2)/(2a))(√(−1+(√(4a^2 +1))))  r_6 =((1+(√(4a^2 +1)))/(2a^2 ))  N_1 =((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_2 =−((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_3 =−((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_4 =((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_5 =((a^3 (√2))/(2(√((4a^2 +1)(−1+(√(4a^2 +1)))))))  N_6 =−(a^2 /(√(4a^2 +1)))

r1=2214a2+1 r2=221+4a2+1 r3=2214a2+1 r4=221+4a2+1 r5=22a1+4a2+1 r6=1+4a2+12a2 N1=224a2+144a2+1 N2=2+24a2+144a2+1 N3=224a2+144a2+1 N4=2+24a2+144a2+1 N5=a322(4a2+1)(1+4a2+1) N6=a24a2+1

Commented bymath khazana by abdo last updated on 20/Jun/18

thank you sir Mjs

thankyousirMjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com