Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37912 by gunawan last updated on 19/Jun/18

Evaluate : the Integral  ∫_(-(π/2)) ^(π/2) ∫_0 ^(3 cos θ) r^2 sin^2 θ. dr dθ

Evaluate:theIntegralπ2π203cosθr2sin2θ.drdθ

Commented by math khazana by abdo last updated on 19/Jun/18

I = ∫_(−(π/2)) ^(π/2) A(θ)sin^2 θdθ with  A(θ) = ∫_0 ^(3cosθ)  r^2 dr =(1/3)[r^3 ]_0 ^(3cosθ) =(1/3) 27 cos^3 θ  =9 cos^3 θ ⇒I =9∫_(−(π/2)) ^(π/2)  sin^2 θ cos^3 θ dθ  =_(sinθ =t)     ∫_(−1) ^1  t^2 (1−t^2 )(√(1−t^2 )) (dt/(√(1−t^2 )))  =∫_(−1) ^1  (t^2  −t^4 )dt=2[ (t^3 /3) −(t^5 /5)]_0 ^1   =2 { (1/3) −(1/5)}=2(2/(15)) =(4/(15)) ⇒ I =9 .(4/(15)) = ((12)/5)  I =((12)/5) .

I=π2π2A(θ)sin2θdθwithA(θ)=03cosθr2dr=13[r3]03cosθ=1327cos3θ=9cos3θI=9π2π2sin2θcos3θdθ=sinθ=t11t2(1t2)1t2dt1t2=11(t2t4)dt=2[t33t55]01=2{1315}=2215=415I=9.415=125I=125.

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

∫_((−Π)/2) ^(Π/2)  sin^2 θ×∣(r^3 /3)∣_0 ^(3cosθ) dθ  (1/3)∫_((−Π)/2) ^(Π/2)  sin^2 θ×27cos^3 θdθ  9∫_(−(Π/2)) ^(Π/2)  sin^2 θ.(1−sin^2 θ)cosθdθ  t=sinθ  dt=cosθdθ  9∫_(−1) ^1 (t^2 −t^4 )dt  9∣(t^3 /3)−(t^5 /5)∣_(−1) ^1   9{((1/3)−(1/5))−(((−1)/3)−((−1)/5))}  9{(1/3)−(1/5)+(1/3)−(1/5)}  18((1/3)−(1/5))=18×(2/(15))=((12)/5)

Π2Π2sin2θ×r3303cosθdθ13Π2Π2sin2θ×27cos3θdθ9Π2Π2sin2θ.(1sin2θ)cosθdθt=sinθdt=cosθdθ911(t2t4)dt9t33t55119{(1315)(1315)}9{1315+1315}18(1315)=18×215=125

Terms of Service

Privacy Policy

Contact: info@tinkutara.com