All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 37912 by gunawan last updated on 19/Jun/18
Evaluate:theIntegral∫−π2π2∫03cosθr2sin2θ.drdθ
Commented by math khazana by abdo last updated on 19/Jun/18
I=∫−π2π2A(θ)sin2θdθwithA(θ)=∫03cosθr2dr=13[r3]03cosθ=1327cos3θ=9cos3θ⇒I=9∫−π2π2sin2θcos3θdθ=sinθ=t∫−11t2(1−t2)1−t2dt1−t2=∫−11(t2−t4)dt=2[t33−t55]01=2{13−15}=2215=415⇒I=9.415=125I=125.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
∫−Π2Π2sin2θ×∣r33∣03cosθdθ13∫−Π2Π2sin2θ×27cos3θdθ9∫−Π2Π2sin2θ.(1−sin2θ)cosθdθt=sinθdt=cosθdθ9∫−11(t2−t4)dt9∣t33−t55∣−119{(13−15)−(−13−−15)}9{13−15+13−15}18(13−15)=18×215=125
Terms of Service
Privacy Policy
Contact: info@tinkutara.com