Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 37913 by gunawan last updated on 19/Jun/18

Solve the diferential equatuion  (dy/dx)=((2x+y+1)/(x−2y+3))

Solvethediferentialequatuiondydx=2x+y+1x2y+3

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

let x=X+h    y=Y+k  (dx/dX)=1    (dy/dY)=1  so(dy/dx)=(dY/dX)  (dY/dX)=((2(X+h)+Y+k+1)/((X+h)−2(Y+k)+3))  (dY/dX)=((2X+Y+2h+k+1)/(X−2Y+h−2k+3))  put 2h+k+1=0  h−2k+3=0  2h+k+1=0  2h−4k+6=0  substructing  5k−5=0   k=1    h−2k+3=0  h−2+3=0   h=−1  (dY/dX)=((2X+Y)/(X−2Y))  (dY/dX)=((2+(Y/X))/(1−2(Y/X)))  put (Y/X)=V  Y=VX  (dY/dX)=V+X(dV/dX)  V+X(dV/dX)=((2+V)/(1−2V))  X(dV/dX)=((2+V)/(1−2V))−V  ((X(dV/dX)=((2+V−V+2V^2 )/(1−2V)))/)  ((1−2V)/(2+2V^2 ))dV=(dX/X)  (1/2)∫(dV/(1+V^2 ))−(1/2)∫((2V)/(1+V^2 ))=∫(dX/X)  (1/2)tan^(−1) V−(1/2)ln(1+V^2 )=lnX+lnc  (1/2)tan^(−1) ((Y/X))−(1/2)ln(1+(Y^2 /X^2 ))=lnX+lnc  (1/2)tan^(−1) (((y−k)/(x−h)))−(1/2)ln{1+(((y−k)/(x−h)))^2 }=ln(x−h)    +lnc  (1/2)tan^(−1) (((y−1)/(x+1)))−(1/2)ln{1+(((y−1)/(x+1)))^2 }=ln(x+1)    +lnc   Ans

letx=X+hy=Y+kdxdX=1dydY=1sodydx=dYdXdYdX=2(X+h)+Y+k+1(X+h)2(Y+k)+3dYdX=2X+Y+2h+k+1X2Y+h2k+3put2h+k+1=0h2k+3=02h+k+1=02h4k+6=0substructing5k5=0k=1h2k+3=0h2+3=0h=1dYdX=2X+YX2YdYdX=2+YX12YXputYX=VY=VXdYdX=V+XdVdXV+XdVdX=2+V12VXdVdX=2+V12VVXdVdX=2+VV+2V212V12V2+2V2dV=dXX12dV1+V2122V1+V2=dXX12tan1V12ln(1+V2)=lnX+lnc12tan1(YX)12ln(1+Y2X2)=lnX+lnc12tan1(ykxh)12ln{1+(ykxh)2}=ln(xh)+lnc12tan1(y1x+1)12ln{1+(y1x+1)2}=ln(x+1)+lncAns

Commented by gunawan last updated on 19/Jun/18

Wow, Nice Sir

Wow,NiceSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com