All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 37914 by gunawan last updated on 19/Jun/18
In△ABC,ifsinA=sin2Bthenprove4cos2A−4cos2B=1−cos4B
Answered by $@ty@m last updated on 19/Jun/18
LHS=4(cos2A−cos2B)=4.2sin(A+B)sin(B−A)=8(sinBcosA+cosBsinA).(sinBcosA−cosBsinA).=8(sin2Bcos2A−cos2Bsin2A)=8{sin2B(1−sin2A)−(1−sin2B)sin2A}=8{sinA(1−sin2A)−(1−sinA)sin2A}=8(sinA−sin3A−sin2A+sin3A)=8(sin2B−sin4B)=8sin2Bcos2B=2.(2sinBcosB)2=2sin22B=1−cos4B=RHS
Terms of Service
Privacy Policy
Contact: info@tinkutara.com