Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37938 by Fawomath last updated on 19/Jun/18

Commented by abdo.msup.com last updated on 19/Jun/18

1) let I_p = ∫ x^2 (n−x)^p  dx by parts  I_p = −(1/(p+1))x^2 (n−x)^(p+1)   +(1/(p+1))∫  2x  (n−x)^(p+1) dx  =−(x^2 /(p+1))(n−x)^(p+1)  +  +(2/(p+1)){ −(1/(p+2))x(n−x)^(p+2)   +(1/(p+2))∫ (n−x)^(p+2) dx}  =−(x^2 /(p+1))(n−x)^(p+1)  −((2x)/((p+1)(p+2)))(n−x)^(p+2)   −(2/((p+1)(p+2)(p+3)))(n−x)^(p+3)   +c

$$\left.\mathrm{1}\right)\:{let}\:{I}_{{p}} =\:\int\:{x}^{\mathrm{2}} \left({n}−{x}\right)^{{p}} \:{dx}\:{by}\:{parts} \\ $$$${I}_{{p}} =\:−\frac{\mathrm{1}}{{p}+\mathrm{1}}{x}^{\mathrm{2}} \left({n}−{x}\right)^{{p}+\mathrm{1}} \:\:+\frac{\mathrm{1}}{{p}+\mathrm{1}}\int\:\:\mathrm{2}{x}\:\:\left({n}−{x}\right)^{{p}+\mathrm{1}} {dx} \\ $$$$=−\frac{{x}^{\mathrm{2}} }{{p}+\mathrm{1}}\left({n}−{x}\right)^{{p}+\mathrm{1}} \:+ \\ $$$$+\frac{\mathrm{2}}{{p}+\mathrm{1}}\left\{\:−\frac{\mathrm{1}}{{p}+\mathrm{2}}{x}\left({n}−{x}\right)^{{p}+\mathrm{2}} \:\:+\frac{\mathrm{1}}{{p}+\mathrm{2}}\int\:\left({n}−{x}\right)^{{p}+\mathrm{2}} {dx}\right\} \\ $$$$=−\frac{{x}^{\mathrm{2}} }{{p}+\mathrm{1}}\left({n}−{x}\right)^{{p}+\mathrm{1}} \:−\frac{\mathrm{2}{x}}{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)}\left({n}−{x}\right)^{{p}+\mathrm{2}} \\ $$$$−\frac{\mathrm{2}}{\left({p}+\mathrm{1}\right)\left({p}+\mathrm{2}\right)\left({p}+\mathrm{3}\right)}\left({n}−{x}\right)^{{p}+\mathrm{3}} \:\:+{c} \\ $$

Commented by abdo.msup.com last updated on 19/Jun/18

2)  ∫ (x^2 /(x+1))dx =∫ ((x^2 −1 +1)/(x+1))dx  =∫ (x−1)dx +∫  (dx/(x+1))  =(x^2 /2) −x +ln∣x+1∣ +c .

$$\left.\mathrm{2}\right)\:\:\int\:\frac{{x}^{\mathrm{2}} }{{x}+\mathrm{1}}{dx}\:=\int\:\frac{{x}^{\mathrm{2}} −\mathrm{1}\:+\mathrm{1}}{{x}+\mathrm{1}}{dx} \\ $$$$=\int\:\left({x}−\mathrm{1}\right){dx}\:+\int\:\:\frac{{dx}}{{x}+\mathrm{1}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:−{x}\:+{ln}\mid{x}+\mathrm{1}\mid\:+{c}\:. \\ $$

Commented by abdo.msup.com last updated on 19/Jun/18

3)  let I = ∫  ((arcsinx)/(√(1−x^2 )))dx  by parts  I = arcsinx.arcsinx −∫ ((arcsinx)/(√(1−x^2 ))) ⇒  2I = (arcsinx)^2  ⇒ I = (1/2)(arcsinx)^2  +c .

$$\left.\mathrm{3}\right)\:\:{let}\:{I}\:=\:\int\:\:\frac{{arcsinx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:\:{by}\:{parts} \\ $$$${I}\:=\:{arcsinx}.{arcsinx}\:−\int\:\frac{{arcsinx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\left({arcsinx}\right)^{\mathrm{2}} \:\Rightarrow\:{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({arcsinx}\right)^{\mathrm{2}} \:+{c}\:. \\ $$

Commented by abdo.msup.com last updated on 19/Jun/18

5) ∫   ((sinx)/((1+cosx)^2 ))dx= ∫ ((−d(cosx))/((1+cosx)^2 ))  =((−1)/(1+cosx)) +c .

$$\left.\mathrm{5}\right)\:\int\:\:\:\frac{{sinx}}{\left(\mathrm{1}+{cosx}\right)^{\mathrm{2}} }{dx}=\:\int\:\frac{−{d}\left({cosx}\right)}{\left(\mathrm{1}+{cosx}\right)^{\mathrm{2}} } \\ $$$$=\frac{−\mathrm{1}}{\mathrm{1}+{cosx}}\:+{c}\:. \\ $$$$ \\ $$

Commented by abdo.msup.com last updated on 19/Jun/18

4) we can prove this equality by   recurrence also we can search   a polynom at form   p(x)=ax^6  +bx^5  +c x^4  +dx^3  +ex^2  +fx   wich verify p(x+1) −p(x)=x^5  and p(0)=0 so  Σ_(k=1) ^n  k^5  = Σ_(k=1) ^n p(k+1)−p(k)  =p(n+1) −p(1)....

$$\left.\mathrm{4}\right)\:{we}\:{can}\:{prove}\:{this}\:{equality}\:{by}\: \\ $$$${recurrence}\:{also}\:{we}\:{can}\:{search}\: \\ $$$${a}\:{polynom}\:{at}\:{form}\: \\ $$$${p}\left({x}\right)={ax}^{\mathrm{6}} \:+{bx}^{\mathrm{5}} \:+{c}\:{x}^{\mathrm{4}} \:+{dx}^{\mathrm{3}} \:+{ex}^{\mathrm{2}} \:+{fx}\: \\ $$$${wich}\:{verify}\:{p}\left({x}+\mathrm{1}\right)\:−{p}\left({x}\right)={x}^{\mathrm{5}} \:{and}\:{p}\left(\mathrm{0}\right)=\mathrm{0}\:{so} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{5}} \:=\:\sum_{{k}=\mathrm{1}} ^{{n}} {p}\left({k}+\mathrm{1}\right)−{p}\left({k}\right) \\ $$$$={p}\left({n}+\mathrm{1}\right)\:−{p}\left(\mathrm{1}\right).... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

1)let t=n−x  dt=−dx  ∫(n−t)^2 ×t^p ×−dt  −∫(n^2 t^p −2nt^(p+1) +t^(p+2)  )dt  −{n^2 (t^(p+1) /(p+1))−2n(t^(p+2) /(p+2))+(t^(p+3) /(p+3))}+c  −{n^2 (((n−x)^(p+1) )/(p+1))2n(((n−x)^(p+2) )/(p+2))+(((n−x)^(p+3) )/(p+3))}+cc

$$\left.\mathrm{1}\right){let}\:{t}={n}−{x}\:\:{dt}=−{dx} \\ $$$$\int\left({n}−{t}\right)^{\mathrm{2}} ×{t}^{{p}} ×−{dt} \\ $$$$−\int\left({n}^{\mathrm{2}} {t}^{{p}} −\mathrm{2}{nt}^{{p}+\mathrm{1}} +{t}^{{p}+\mathrm{2}} \:\right){dt} \\ $$$$−\left\{{n}^{\mathrm{2}} \frac{{t}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}−\mathrm{2}{n}\frac{{t}^{{p}+\mathrm{2}} }{{p}+\mathrm{2}}+\frac{{t}^{{p}+\mathrm{3}} }{{p}+\mathrm{3}}\right\}+{c} \\ $$$$−\left\{{n}^{\mathrm{2}} \frac{\left({n}−{x}\right)^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}\mathrm{2}{n}\frac{\left({n}−{x}\right)^{{p}+\mathrm{2}} }{{p}+\mathrm{2}}+\frac{\left({n}−{x}\right)^{{p}+\mathrm{3}} }{{p}+\mathrm{3}}\right\}+{cc} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

2)∫((x^2 −1+1)/(x+1))dx  ∫x−1 dx+∫(dx/(x+1))  (x^2 /2)−x+ln(x+1)+c

$$\left.\mathrm{2}\right)\int\frac{{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{{x}+\mathrm{1}}{dx} \\ $$$$\int{x}−\mathrm{1}\:{dx}+\int\frac{{dx}}{{x}+\mathrm{1}} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−{x}+{ln}\left({x}+\mathrm{1}\right)+{c} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

3)∫((sin^(−1) x)/(√(1−x^2 )))dx    t=sin^(−1) x   dt=(dx/(√(1−x^2 )))  ∫tdt  (t^2 /2)+c  =(1/2)(sin^(−1) x)^2 +c

$$\left.\mathrm{3}\right)\int\frac{{sin}^{−\mathrm{1}} {x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:\: \\ $$$${t}={sin}^{−\mathrm{1}} {x}\:\:\:{dt}=\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\int{tdt} \\ $$$$\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({sin}^{−\mathrm{1}} {x}\right)^{\mathrm{2}} +{c} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

∫tan^2 xsec^2 xdx  t=tanx   dt=sec^2 xdx  ∫t^2 dt  (t^3 /3)+c  (((tanx)^3 )/3)+c

$$\int{tan}^{\mathrm{2}} {xsec}^{\mathrm{2}} {xdx} \\ $$$${t}={tanx}\:\:\:{dt}={sec}^{\mathrm{2}} {xdx} \\ $$$$\int{t}^{\mathrm{2}} {dt} \\ $$$$\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+{c} \\ $$$$\frac{\left({tanx}\right)^{\mathrm{3}} }{\mathrm{3}}+{c} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

5)∫((sinx)/((1+cosx)^2 ))dx  =−1∫((d(1+cosx)/(1+cosx)^2 ))  ^   =−1×(1/(1+cosx))×−1=(1/(1+cosx))

$$\left.\mathrm{5}\right)\int\frac{{sinx}}{\left(\mathrm{1}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$$$=−\mathrm{1}\int\frac{{d}\left(\mathrm{1}+{cosx}\right.}{\left.\mathrm{1}+{cosx}\right)^{\mathrm{2}} }\:\overset{} {\:} \\ $$$$=−\mathrm{1}×\frac{\mathrm{1}}{\mathrm{1}+{cosx}}×−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+{cosx}} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com