Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 37989 by ajfour last updated on 20/Jun/18

Commented by ajfour last updated on 20/Jun/18

(i)Find area of blue square and   red square.  (ii)Find θ for which corners of  red square lies on sides of blue  square.

$$\left({i}\right){Find}\:{area}\:{of}\:{blue}\:{square}\:{and}\: \\ $$$${red}\:{square}. \\ $$$$\left({ii}\right){Find}\:\theta\:{for}\:{which}\:{corners}\:{of} \\ $$$${red}\:{square}\:{lies}\:{on}\:{sides}\:{of}\:{blue} \\ $$$${square}. \\ $$

Commented by MrW3 last updated on 20/Jun/18

(i)  side length of blue square:  a_1 =(a/(cos θ))−a sin θ (1+tan θ)  ⇒a_1 =a (cos θ−sin θ)  ⇒A_1 =a_1 ^2 =a^2 (1−sin 2θ)    side length of red square:  a_2 =a tan θ sin α with  tan α=(a/(a−a tan θ))=((cos θ)/(cos θ−sin θ))  or sin α=((cos θ)/(√(1+cos^2  θ−sin 2θ)))  ⇒a_2 =a ((sin θ)/(√(1+cos^2  θ−sin 2θ)))  ⇒A_2 =a_2 ^2 =a^2 ((sin^2  θ)/(1+cos^2  θ−sin 2θ))    (ii)  a_1 =a_2 [sin (α−θ)+cos (α−θ)]  a_1 =a_2 [sin α (sin θ+cos θ)+cos α (cos θ−sin θ)]  (cos θ−sin θ)=((sin θ)/(√(1+cos^2  θ−sin 2θ)))[((cos θ (sin θ+cos θ))/(√(1+cos^2  θ−sin 2θ))) +(((cos θ−sin θ)^2 )/(√(1+cos^2  θ−sin 2θ)))]  cos θ−sin θ=((sin θ (sin θ cos θ+cos^2  θ+1−sin 2θ))/(1+cos^2  θ−sin 2θ))  cos θ−sin θ=((sin^2  θ cos θ)/(1+cos^2  θ−sin 2θ))+sin θ  2(cos θ−2sin θ)=((sin θ sin 2θ)/(1+cos^2  θ−sin 2θ))  2(cos θ−2sin θ)(1+cos^2  θ+sin 2θ)=sin θ sin 2θ    ⇒θ≈23.3°

$$\left({i}\right) \\ $$$${side}\:{length}\:{of}\:{blue}\:{square}: \\ $$$${a}_{\mathrm{1}} =\frac{{a}}{\mathrm{cos}\:\theta}−{a}\:\mathrm{sin}\:\theta\:\left(\mathrm{1}+\mathrm{tan}\:\theta\right) \\ $$$$\Rightarrow{a}_{\mathrm{1}} ={a}\:\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{A}_{\mathrm{1}} ={a}_{\mathrm{1}} ^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$$ \\ $$$${side}\:{length}\:{of}\:{red}\:{square}: \\ $$$${a}_{\mathrm{2}} ={a}\:\mathrm{tan}\:\theta\:\mathrm{sin}\:\alpha\:{with} \\ $$$$\mathrm{tan}\:\alpha=\frac{{a}}{{a}−{a}\:\mathrm{tan}\:\theta}=\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\theta−\mathrm{sin}\:\theta} \\ $$$${or}\:\mathrm{sin}\:\alpha=\frac{\mathrm{cos}\:\theta}{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}} \\ $$$$\Rightarrow{a}_{\mathrm{2}} ={a}\:\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}} \\ $$$$\Rightarrow{A}_{\mathrm{2}} ={a}_{\mathrm{2}} ^{\mathrm{2}} ={a}^{\mathrm{2}} \frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$ \\ $$$$\left({ii}\right) \\ $$$${a}_{\mathrm{1}} ={a}_{\mathrm{2}} \left[\mathrm{sin}\:\left(\alpha−\theta\right)+\mathrm{cos}\:\left(\alpha−\theta\right)\right] \\ $$$${a}_{\mathrm{1}} ={a}_{\mathrm{2}} \left[\mathrm{sin}\:\alpha\:\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)+\mathrm{cos}\:\alpha\:\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)\right] \\ $$$$\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)=\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}}\left[\frac{\mathrm{cos}\:\theta\:\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)}{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}}\:+\frac{\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}}\right] \\ $$$$\mathrm{cos}\:\theta−\mathrm{sin}\:\theta=\frac{\mathrm{sin}\:\theta\:\left(\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$\mathrm{cos}\:\theta−\mathrm{sin}\:\theta=\frac{\mathrm{sin}^{\mathrm{2}} \:\theta\:\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta}+\mathrm{sin}\:\theta \\ $$$$\mathrm{2}\left(\mathrm{cos}\:\theta−\mathrm{2sin}\:\theta\right)=\frac{\mathrm{sin}\:\theta\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$\mathrm{2}\left(\mathrm{cos}\:\theta−\mathrm{2sin}\:\theta\right)\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{sin}\:\mathrm{2}\theta\right)=\mathrm{sin}\:\theta\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$$ \\ $$$$\Rightarrow\theta\approx\mathrm{23}.\mathrm{3}° \\ $$

Commented by ajfour last updated on 20/Jun/18

Thank you sir, please answer (ii)  even..

$${Thank}\:{you}\:{sir},\:{please}\:{answer}\:\left({ii}\right) \\ $$$${even}.. \\ $$

Commented by MrW3 last updated on 20/Jun/18

I can solve (ii) only numerically.

$${I}\:{can}\:{solve}\:\left({ii}\right)\:{only}\:{numerically}. \\ $$

Commented by ajfour last updated on 20/Jun/18

yes Sir, this is right. Thank You.

$${yes}\:{Sir},\:{this}\:{is}\:{right}.\:{Thank}\:{You}. \\ $$

Commented by MrW3 last updated on 20/Jun/18

see correction. θ≈23.3°.

$${see}\:{correction}.\:\theta\approx\mathrm{23}.\mathrm{3}°. \\ $$

Commented by MrW3 last updated on 20/Jun/18

Answered by ajfour last updated on 20/Jun/18

let side of blue square be b, and  that of red square be r.        b =a(cos 𝛉−sin 𝛉)  m=(a/(a−atan θ)) = (1/(1−tan 𝛉))     r=((atan 𝛉)/(√(1+(1−tan 𝛉)^2 ))) .

$${let}\:{side}\:{of}\:{blue}\:{square}\:{be}\:\boldsymbol{{b}},\:{and} \\ $$$${that}\:{of}\:{red}\:{square}\:{be}\:\boldsymbol{{r}}. \\ $$$$\:\:\:\:\:\:\boldsymbol{{b}}\:=\boldsymbol{{a}}\left(\mathrm{cos}\:\boldsymbol{\theta}−\mathrm{sin}\:\boldsymbol{\theta}\right) \\ $$$${m}=\frac{{a}}{{a}−{a}\mathrm{tan}\:\theta}\:=\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{tan}\:\boldsymbol{\theta}} \\ $$$$\:\:\:\boldsymbol{{r}}=\frac{\boldsymbol{{a}}\mathrm{tan}\:\boldsymbol{\theta}}{\sqrt{\mathrm{1}+\left(\mathrm{1}−\mathrm{tan}\:\boldsymbol{\theta}\right)^{\mathrm{2}} }}\:. \\ $$

Answered by ajfour last updated on 20/Jun/18

let bottom corner of red square  be B(h,k)  and   m=(a/(a−atan θ))             ⇒   1+mtan θ = m        (k/(h−atan θ)) = m    (i)     (k/(a−h)) = (1/m)    ....(ii)  if B lies on lower side of blue  square , then   k= htan θ   ...(iii)  from (ii) and (iii):    mhtan θ=a−h  ⇒     h = (a/(1+mtan θ)) ; k=((atan θ)/(1+mtan θ))  since 1+mtan θ = m      h=(a/m) ;   k = ((atan 𝛉)/m)  Using in (i):         ((atan θ)/m)= a−amtan θ       tan θ=m−m^2 tan θ       tan θ=((1−((tan θ)/((1−tan θ))))/(1−tan θ))  let  tan θ = s     ⇒     s(1−s)^2  = 1−2s             θ = tan^(−1)  s .     (In good agreement with your         answer, Sir ).

$${let}\:{bottom}\:{corner}\:{of}\:{red}\:{square} \\ $$$${be}\:{B}\left({h},{k}\right)\:\:{and}\:\:\:{m}=\frac{{a}}{{a}−{a}\mathrm{tan}\:\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\mathrm{1}+{m}\mathrm{tan}\:\theta\:=\:{m} \\ $$$$\:\:\:\:\:\:\frac{{k}}{{h}−{a}\mathrm{tan}\:\theta}\:=\:{m}\:\:\:\:\left({i}\right) \\ $$$$\:\:\:\frac{{k}}{{a}−{h}}\:=\:\frac{\mathrm{1}}{{m}}\:\:\:\:....\left({ii}\right) \\ $$$${if}\:{B}\:{lies}\:{on}\:{lower}\:{side}\:{of}\:{blue} \\ $$$${square}\:,\:{then}\:\:\:{k}=\:{h}\mathrm{tan}\:\theta\:\:\:...\left({iii}\right) \\ $$$${from}\:\left({ii}\right)\:{and}\:\left({iii}\right): \\ $$$$\:\:{mh}\mathrm{tan}\:\theta={a}−{h} \\ $$$$\Rightarrow\:\:\:\:\:{h}\:=\:\frac{{a}}{\mathrm{1}+{m}\mathrm{tan}\:\theta}\:;\:{k}=\frac{{a}\mathrm{tan}\:\theta}{\mathrm{1}+{m}\mathrm{tan}\:\theta} \\ $$$${since}\:\mathrm{1}+{m}\mathrm{tan}\:\theta\:=\:{m} \\ $$$$\:\:\:\:\boldsymbol{{h}}=\frac{\boldsymbol{{a}}}{\boldsymbol{{m}}}\:;\:\:\:\boldsymbol{{k}}\:=\:\frac{\boldsymbol{{a}}\mathrm{tan}\:\boldsymbol{\theta}}{\boldsymbol{{m}}} \\ $$$${Using}\:{in}\:\left({i}\right): \\ $$$$\:\:\:\:\:\:\:\frac{{a}\mathrm{tan}\:\theta}{{m}}=\:{a}−{am}\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\mathrm{tan}\:\theta={m}−{m}^{\mathrm{2}} \mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\mathrm{tan}\:\theta=\frac{\mathrm{1}−\frac{\mathrm{tan}\:\theta}{\left(\mathrm{1}−\mathrm{tan}\:\theta\right)}}{\mathrm{1}−\mathrm{tan}\:\theta} \\ $$$${let}\:\:\mathrm{tan}\:\theta\:=\:{s} \\ $$$$\:\:\:\Rightarrow\:\:\:\:\:{s}\left(\mathrm{1}−{s}\right)^{\mathrm{2}} \:=\:\mathrm{1}−\mathrm{2}{s} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\theta\:=\:\mathrm{tan}^{−\mathrm{1}} \:{s}\:. \\ $$$$\:\:\:\left({In}\:{good}\:{agreement}\:{with}\:{your}\right. \\ $$$$\left.\:\:\:\:\:\:\:{answer},\:{Sir}\:\right). \\ $$

Commented by MrW3 last updated on 20/Jun/18

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com