Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 38015 by ajfour last updated on 20/Jun/18

Commented by ajfour last updated on 20/Jun/18

Find θ in terms of d, R if circle  has all three coloured areas equal.

Findθintermsofd,Rifcirclehasallthreecolouredareasequal.

Commented by MrW3 last updated on 21/Jun/18

let α=∠TCQ  (1/3)×πR^2 =(R^2 /2)(α−sin α)  ⇒sin α=α−((2π)/3)  ⇒α=149.27°    R cos ((α/2))=d sin θ  ⇒θ=sin^(−1) [(R/d) cos (α/2)]=sin^(−1) (0.265(R/d))

letα=TCQ13×πR2=R22(αsinα)sinα=α2π3α=149.27°Rcos(α2)=dsinθθ=sin1[Rdcosα2]=sin1(0.265Rd)

Commented by ajfour last updated on 21/Jun/18

Quite short & very nice .Thanks.  Please try the △ one, Sir.

Quiteshort&verynice.Thanks.Pleasetrytheone,Sir.

Commented by ajfour last updated on 21/Jun/18

What is d in terms of R if the  area PST^(⌢)   is also equal to ((πR^2 )/3) .

WhatisdintermsofRiftheareaPSTisalsoequaltoπR23.

Commented by MrW3 last updated on 21/Jun/18

let β=∠QCR  β=2[θ+(π/2)−(α/2)]=2θ+π−α  A_(PQRP) =2×((πR^2 )/3)  2[(1/2)d^2 sin θcos θ+(1/2)R^2 sin (α/2)cos (α/2)]+((R^2 β)/2)=((2πR^2 )/3)  ((d/R))^2 sin 2θ+sin α+β=((4π)/3)  ((d/R))^2 sin 2θ+sin α+2θ+π−α=((4π)/3)  since α−sin α=((2π)/3)  ⇒((d/R))^2 sin 2θ+2θ+π−((2π)/3)=((4π)/3)  ⇒((d/R))^2 sin 2θ+2θ=π  since θ=sin^(−1) (((cos (α/2))/(d/R)))=sin^(−1) (((cos (α/2))/δ))  let δ=(d/R)  sin 2θ=2sin θcos θ=2×((cos (α/2))/δ)×(√(1−(((cos (α/2))/δ))^2 ))  ⇒δ^2 2×((cos (α/2))/δ)×(√(1−(((cos (α/2))/δ))^2 ))+2sin^(−1) (((cos (α/2))/δ))=π  ⇒δ cos (α/2)×(√(1−(((cos (α/2))/δ))^2 ))+sin^(−1) (((cos (α/2))/δ))=(π/2)  ⇒δ cos (α/2)×(√(1−(((cos (α/2))/δ))^2 ))=(π/2)−sin^(−1) (((cos (α/2))/δ))  ⇒cos^2  (α/2)(√(1−(((cos (α/2))/δ))^2 ))=((cos (α/2))/δ)((π/2)−sin^(−1) (((cos (α/2))/δ)))  with α=149.27°  ⇒δ=5.7612  ⇒d=5.7612R

letβ=QCRβ=2[θ+π2α2]=2θ+παAPQRP=2×πR232[12d2sinθcosθ+12R2sinα2cosα2]+R2β2=2πR23(dR)2sin2θ+sinα+β=4π3(dR)2sin2θ+sinα+2θ+πα=4π3sinceαsinα=2π3(dR)2sin2θ+2θ+π2π3=4π3(dR)2sin2θ+2θ=πsinceθ=sin1(cosα2dR)=sin1(cosα2δ)letδ=dRsin2θ=2sinθcosθ=2×cosα2δ×1(cosα2δ)2δ22×cosα2δ×1(cosα2δ)2+2sin1(cosα2δ)=πδcosα2×1(cosα2δ)2+sin1(cosα2δ)=π2δcosα2×1(cosα2δ)2=π2sin1(cosα2δ)cos2α21(cosα2δ)2=cosα2δ(π2sin1(cosα2δ))withα=149.27°δ=5.7612d=5.7612R

Commented by ajfour last updated on 21/Jun/18

Thank you sir. Wonderful  solution.

Thankyousir.Wonderfulsolution.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com