Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38058 by ajfour last updated on 21/Jun/18

∫((tan x)/(a+btan^2 x)) dx  = ?

$$\int\frac{\mathrm{tan}\:{x}}{{a}+{b}\mathrm{tan}\:^{\mathrm{2}} {x}}\:{dx}\:\:=\:? \\ $$

Answered by behi83417@gmail.com last updated on 21/Jun/18

tg^2 x=(a/b)t⇒2tgx(1+tg^2 x)dx=(a/b)dt  2tgxdx=(((a/b)dt)/(1+(a/b)t))⇒tgxdx=((adt)/(2(b+at)))  I=∫(((adt)/(2(b+at)))/(a+at))=(1/2)∫(dt/((1+t)(b+at)))=    (1/(2(b−a)))∫[(1/(1+t))−(a/(b+at))]dt=  =(1/(2(b−a)))[ln(1+t)−ln(b+at)+const]=  =(1/(2(b−a)))[ln(1+(b/a)tg^2 x)−ln(b+btg^2 x)+c]=  =(1/(2(b−a)))ln(a.cos^2 x+b.sin^2 x)+const. ■  (1/((1+t)(b+at)))=(A/(1+t))+(B/(b+at))  t=−1⇒(1/(b−a))=A,t=0⇒B=1−(b/(b−a))=(a/(a−b))

$${tg}^{\mathrm{2}} {x}=\frac{{a}}{{b}}{t}\Rightarrow\mathrm{2}{tgx}\left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right){dx}=\frac{{a}}{{b}}{dt} \\ $$$$\mathrm{2}{tgxdx}=\frac{\frac{{a}}{{b}}{dt}}{\mathrm{1}+\frac{{a}}{{b}}{t}}\Rightarrow{tgxdx}=\frac{{adt}}{\mathrm{2}\left({b}+{at}\right)} \\ $$$${I}=\int\frac{\frac{{adt}}{\mathrm{2}\left({b}+{at}\right)}}{{a}+{at}}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\mathrm{1}+{t}\right)\left({b}+{at}\right)}=\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}\int\left[\frac{\mathrm{1}}{\mathrm{1}+{t}}−\frac{{a}}{{b}+{at}}\right]{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}\left[{ln}\left(\mathrm{1}+{t}\right)−{ln}\left({b}+{at}\right)+{const}\right]= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}\left[\boldsymbol{{ln}}\left(\mathrm{1}+\frac{\boldsymbol{{b}}}{\boldsymbol{{a}}}\boldsymbol{{tg}}^{\mathrm{2}} \boldsymbol{{x}}\right)−\boldsymbol{{ln}}\left(\boldsymbol{{b}}+\boldsymbol{{btg}}^{\mathrm{2}} \boldsymbol{{x}}\right)+\boldsymbol{{c}}\right]= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left(\boldsymbol{{b}}−\boldsymbol{{a}}\right)}\boldsymbol{{ln}}\left(\boldsymbol{{a}}.\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{{x}}+\boldsymbol{{b}}.\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{{x}}\right)+\boldsymbol{{const}}.\:\blacksquare \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)\left({b}+{at}\right)}=\frac{{A}}{\mathrm{1}+{t}}+\frac{{B}}{{b}+{at}} \\ $$$${t}=−\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{b}−{a}}={A},{t}=\mathrm{0}\Rightarrow{B}=\mathrm{1}−\frac{{b}}{{b}−{a}}=\frac{{a}}{{a}−{b}} \\ $$

Commented by ajfour last updated on 21/Jun/18

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by ajfour last updated on 21/Jun/18

I=∫((sin xcos x)/(acos^2 x+bsin^2 x))dx  d(acos^2 x+bsin^2 x)=        (b−a)sin 2xdx  I=(1/(2(b−a)))ln ∣acos^2 x+bsin^2 x∣+c .

$${I}=\int\frac{\mathrm{sin}\:{x}\mathrm{cos}\:{x}}{{a}\mathrm{cos}\:^{\mathrm{2}} {x}+{b}\mathrm{sin}\:^{\mathrm{2}} {x}}{dx} \\ $$$${d}\left({a}\mathrm{cos}\:^{\mathrm{2}} {x}+{b}\mathrm{sin}\:^{\mathrm{2}} {x}\right)= \\ $$$$\:\:\:\:\:\:\left({b}−{a}\right)\mathrm{sin}\:\mathrm{2}{xdx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}\mathrm{ln}\:\mid{a}\mathrm{cos}\:^{\mathrm{2}} {x}+{b}\mathrm{sin}\:^{\mathrm{2}} {x}\mid+{c}\:. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18

tricky...bah...darun..

$${tricky}...{bah}...{darun}.. \\ $$$$ \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18

∫((tanx.cos^2 x)/(acos^2 x+bsin^2 x))dx  (1/2)∫((2sinxcosx)/(acos^2 x+bsin^2 x))dx  t=acos^2 x+bsin^2 x  dt=(a×−sin2x+b×sin2x)dx  dt=(b−a)sin2xdx  (dt/(b−a))=sin2xdx  (1/2)×(1/(b−a))∫(dt/t)  (1/(2(b−a)))lnt+c  (1/(2(b−a)))ln(acos^2 x+bsin^2 x)+c  so intregatin is independent of power a  whether a or a^2

$$\int\frac{{tanx}.{cos}^{\mathrm{2}} {x}}{{acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{sinxcosx}}{{acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}}{dx} \\ $$$${t}={acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x} \\ $$$${dt}=\left({a}×−{sin}\mathrm{2}{x}+{b}×{sin}\mathrm{2}{x}\right){dx} \\ $$$${dt}=\left({b}−{a}\right){sin}\mathrm{2}{xdx} \\ $$$$\frac{{dt}}{{b}−{a}}={sin}\mathrm{2}{xdx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{{b}−{a}}\int\frac{{dt}}{{t}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}{lnt}+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left({b}−{a}\right)}{ln}\left({acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}\right)+{c} \\ $$$${so}\:{intregatin}\:{is}\:{independent}\:{of}\:{power}\:{a} \\ $$$${whether}\:{a}\:{or}\:{a}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com