Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38074 by ajfour last updated on 21/Jun/18

∫(dx/(a+btan^2 x)) = ?

dxa+btan2x=?

Commented by prof Abdo imad last updated on 21/Jun/18

changement tanx=t give  I = ∫  (1/(a+bt^2 )) (dt/(1+t^2 )) =∫    (dt/((1+t^2 )(a+bt^2 )))  let decompose F(t)= (1/((1+t^2 )(a+bt^2 )))  F(t)= ((αt +β)/(t^2  +1)) +((ct +d)/(bt^2  +a))  F(−t)=F(t) ⇒((−αt +β)/(t^2  +1)) +((−ct +d)/(bt^2  +a)) =F(t)⇒  α=c=0 ⇒F(t)=(β/(1+t^2 )) +(d/(bt^2  +a))  lim_(t→+∞) t^2 F(t)=0=β +(d/b) ⇒bβ +d=0 ⇒  d=−bβ ⇒F(t)=(β/(1+t^2 )) −((bβ)/(bt^2  +a))  F(0)= (1/a) =β −((bβ)/a) ⇒1=aβ −bβ ⇒β= (1/(a−b))  if a≠b ⇒F(t)= (1/(a−b)){ (1/(1+t^2 )) −(b/(bt^2  +a))}  I = ∫ F(t)dt ⇒(a−b)I= ∫  (dt/(1+t^2 )) −∫    (dt/(t^2  +(a/b)))  case1 (a/b)>0  we do the chang.t=(√(a/b)) u  ∫     (dt/(t^2  +(a/b))) = ∫    (1/((a/b)(1+u^2 ))) (√(a/b)) du  =(b/a) (√(a/b)) arctanu =(√(b/a)) arctan((√(b/a))tanx)⇒  (a−b)I= x −(√(b/a)) arctan((√(b/a))tanx)⇒  I= (1/(a−b)){ x−(√(b/a))arctan((√(b/a))tanx) +λ  case2  (a/b)<0     ∫     (dt/(t^2  +(a/b))) =∫    (dt/(t^2 −((√(−(a/b))))^2 ))  = (1/(2(√(−(a/b)))))∫  (   (1/(t−(√(−(a/b))))) −(1/(t +(√(−(a/b))))))dt  = (1/(2(√(−(a/b)))))ln∣  ((t−(√(−(a/b))))/(t+(√(−(a/b)))))∣ ⇒  I = (1/(a−b)){ x −(1/(2(√(−(a/b))))) ln∣((tan(x) −(√(−(a/b))))/(tanx +(√(−(a/b)))))∣} +λ

changementtanx=tgiveI=1a+bt2dt1+t2=dt(1+t2)(a+bt2)letdecomposeF(t)=1(1+t2)(a+bt2)F(t)=αt+βt2+1+ct+dbt2+aF(t)=F(t)αt+βt2+1+ct+dbt2+a=F(t)α=c=0F(t)=β1+t2+dbt2+alimt+t2F(t)=0=β+dbbβ+d=0d=bβF(t)=β1+t2bβbt2+aF(0)=1a=βbβa1=aβbββ=1abifabF(t)=1ab{11+t2bbt2+a}I=F(t)dt(ab)I=dt1+t2dtt2+abcase1ab>0wedothechang.t=abudtt2+ab=1ab(1+u2)abdu=baabarctanu=baarctan(batanx)(ab)I=xbaarctan(batanx)I=1ab{xbaarctan(batanx)+λcase2ab<0dtt2+ab=dtt2(ab)2=12ab(1tab1t+ab)dt=12ablntabt+abI=1ab{x12ablntan(x)abtanx+ab}+λ

Commented by prof Abdo imad last updated on 21/Jun/18

if a=b  I  = (1/a) ∫     (dx/(1+tan^2 x))    (a≠0)  =(1/a) ∫ cos^2 x dx=(1/a) ∫  ((1+cos(2x))/2)dx  = (x/(2a))  +(1/(4a)) sin(2x) + λ .

ifa=bI=1adx1+tan2x(a0)=1acos2xdx=1a1+cos(2x)2dx=x2a+14asin(2x)+λ.

Commented by ajfour last updated on 21/Jun/18

Wow Sir, thank you .

WowSir,thankyou.

Commented by math khazana by abdo last updated on 21/Jun/18

nevermind sir Ajfour.

nevermindsirAjfour.

Answered by behi83417@gmail.com last updated on 21/Jun/18

tg^2 x=(a/b)t⇒tgx=(√((a/b)t))  2tgx(1+tg^2 x)dx=(a/b)dt⇒  2(√((at)/b))(1+((at)/b))dx=(a/b)dt⇒dx=((adt)/(2(√((at)/b)).(b+at)))  ⇒I=(1/(2(√(a/b))))∫(((adt)/((√t)(b+at)))/(a+at))=m∫(dt/((√t)(1+t)(b+at)))  m=(2(√(a/b)))^(−1) ,t=u^2 ⇒dt=2udu  I=m∫((2udu)/(u(1+u^2 )(b+au^2 )))=2m∫(du/((1+u^2 )(b+au^2 )))=  =2m[a.(1/(4(√(ab))))tg^(−1) (a.(u/(√(ab))))−(1/4)tg^(−1) u]+const  =(1/2)m[(√(a/b)).tg^(−1) ((√(a/b))u)−tg^(−1) u+const=  =(1/2).(1/2)(√(b/a)).(√(a/b))tg^(−1) ((√(a/b)).(√(b/a)).tgx)−  −(1/4).(√(b/a)).tg^(−1) ((√(b/a)).tgx)+const=  =(1/4)x−(1/4).(√(b/a)).arctg[(√(b/a)).tgx]+const. ■

tg2x=abttgx=abt2tgx(1+tg2x)dx=abdt2atb(1+atb)dx=abdtdx=adt2atb.(b+at)I=12abadtt(b+at)a+at=mdtt(1+t)(b+at)m=(2ab)1,t=u2dt=2uduI=m2uduu(1+u2)(b+au2)=2mdu(1+u2)(b+au2)==2m[a.14abtg1(a.uab)14tg1u]+const=12m[ab.tg1(abu)tg1u+const==12.12ba.abtg1(ab.ba.tgx)14.ba.tg1(ba.tgx)+const==14x14.ba.arctg[ba.tgx]+const.

Commented by ajfour last updated on 21/Jun/18

God bless you Sir.

GodblessyouSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com