Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 3808 by Rasheed Soomro last updated on 21/Dec/15

A chord divides  the circle in two  segments,having areas s_1  and  s_2 .  If diameter, perpendicular to this  chord is cut into 1:3 by the chord ,what is s_1 :s_2  ?

$${A}\:{chord}\:{divides}\:\:{the}\:{circle}\:{in}\:{two} \\ $$$${segments},{having}\:{areas}\:{s}_{\mathrm{1}} \:{and}\:\:{s}_{\mathrm{2}} . \\ $$$${If}\:{diameter},\:{perpendicular}\:{to}\:{this} \\ $$$${chord}\:{is}\:{cut}\:{into}\:\mathrm{1}:\mathrm{3}\:{by}\:{the}\:{chord}\:,{what}\:{is}\:{s}_{\mathrm{1}} :{s}_{\mathrm{2}} \:? \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 21/Dec/15

Let AB is a chord and CD (⊥AB) is  a diameter.  Let AB cuts CD at point O  If CO:OD=1:3 , what is s_1 :s_2   s_1  and s_2  are areas of two segments of the  circle produced by chord AB.

$${Let}\:{AB}\:{is}\:{a}\:{chord}\:{and}\:{CD}\:\left(\bot{AB}\right)\:{is}\:\:{a}\:{diameter}. \\ $$$${Let}\:{AB}\:{cuts}\:{CD}\:{at}\:{point}\:{O} \\ $$$${If}\:{CO}:{OD}=\mathrm{1}:\mathrm{3}\:,\:{what}\:{is}\:{s}_{\mathrm{1}} :{s}_{\mathrm{2}} \\ $$$${s}_{\mathrm{1}} \:{and}\:{s}_{\mathrm{2}} \:{are}\:{areas}\:{of}\:{two}\:{segments}\:{of}\:{the} \\ $$$${circle}\:{produced}\:{by}\:{chord}\:{AB}. \\ $$

Answered by Yozzii last updated on 21/Dec/15

(Integral Calculus can alternatively  be used to find the value of (s_1 /s_2 ).)  Draw a circle with diameter length d and   centre Q. A diameter of the circle normally  cuts a chord AB on the circle such that  d is partitioned in the ratio 1:3. Let  LF  be such a diameter and D be the   point of intersection of the chord AB  and diameter LF. We thus have   ∣LD∣=3a and ∣DF∣=a (a>0) so that DF:LD=1:3.  Therefore, d=3a+a=4a⇒ radius r=2a.  Complete the isosceles triangle △AQB  and let ∠AQB=θ. The area A_(1 ) of the sector AB  of the circle is then   A_1 =(1/2)r^2 θ=(1/2)×4a^2 θ=2a^2 θ.  The area of △AQB,denoted by A_2 , is given by  A_2 =(1/2)2a×2a×sinθ=2a^2 sinθ.  Now, let s_1  be the area between the chord  AB and the arc AB.   ⇒s_1 =A_1 −A_2 =2a^2 (θ−sinθ)  Hence, the area of the other segment  of the circle is s_2 =πr^2 −s_1 .  s_2 =4πa^2 −2a^2 (θ−sinθ)  s_2 =2a^2 (2π+sinθ−θ)  Therefore, (s_1 /s_2 )=((θ−sinθ)/(2π+sinθ−θ)).  Returning to △AQB, we can yield  a right−angled triangle △AQD  with ∠AQD=(1/2)∠AQB=(θ/2)  and ∠QDA=(π/2).  We then have cos(θ/2)=((QD)/(AQ))=(a/(2a))=(1/2)  ⇒(θ/2)=(π/3)⇒θ=((2π)/3).  ∴ (s_1 /s_2 )=((((2π)/3)−sin((2π)/3))/(2π+sin((2π)/3)−((2π)/3)))=((((2π)/3)−((√3)/2))/(2π+((√3)/2)−((2π)/3)))  (s_1 /s_2 )=((4π−3(√3))/(8π+3(√3)))

$$\left({Integral}\:{Calculus}\:{can}\:{alternatively}\right. \\ $$$$\left.{be}\:{used}\:{to}\:{find}\:{the}\:{value}\:{of}\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }.\right) \\ $$$${Draw}\:{a}\:{circle}\:{with}\:{diameter}\:{length}\:{d}\:{and}\: \\ $$$${centre}\:{Q}.\:{A}\:{diameter}\:{of}\:{the}\:{circle}\:{normally} \\ $$$${cuts}\:{a}\:{chord}\:{AB}\:{on}\:{the}\:{circle}\:{such}\:{that} \\ $$$${d}\:{is}\:{partitioned}\:{in}\:{the}\:{ratio}\:\mathrm{1}:\mathrm{3}.\:{Let} \\ $$$${LF}\:\:{be}\:{such}\:{a}\:{diameter}\:{and}\:{D}\:{be}\:{the}\: \\ $$$${point}\:{of}\:{intersection}\:{of}\:{the}\:{chord}\:{AB} \\ $$$${and}\:{diameter}\:{LF}.\:{We}\:{thus}\:{have}\: \\ $$$$\mid{LD}\mid=\mathrm{3}{a}\:{and}\:\mid{DF}\mid={a}\:\left({a}>\mathrm{0}\right)\:{so}\:{that}\:{DF}:{LD}=\mathrm{1}:\mathrm{3}. \\ $$$${Therefore},\:{d}=\mathrm{3}{a}+{a}=\mathrm{4}{a}\Rightarrow\:{radius}\:{r}=\mathrm{2}{a}. \\ $$$${Complete}\:{the}\:{isosceles}\:{triangle}\:\bigtriangleup{AQB} \\ $$$${and}\:{let}\:\angle{AQB}=\theta.\:{The}\:{area}\:{A}_{\mathrm{1}\:} {of}\:{the}\:{sector}\:{AB} \\ $$$${of}\:{the}\:{circle}\:{is}\:{then} \\ $$$$\:{A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} \theta=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{4}{a}^{\mathrm{2}} \theta=\mathrm{2}{a}^{\mathrm{2}} \theta. \\ $$$${The}\:{area}\:{of}\:\bigtriangleup{AQB},{denoted}\:{by}\:{A}_{\mathrm{2}} ,\:{is}\:{given}\:{by} \\ $$$${A}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{2}{a}×\mathrm{2}{a}×{sin}\theta=\mathrm{2}{a}^{\mathrm{2}} {sin}\theta. \\ $$$${Now},\:{let}\:{s}_{\mathrm{1}} \:{be}\:{the}\:{area}\:{between}\:{the}\:{chord} \\ $$$${AB}\:{and}\:{the}\:{arc}\:{AB}.\: \\ $$$$\Rightarrow{s}_{\mathrm{1}} ={A}_{\mathrm{1}} −{A}_{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \left(\theta−{sin}\theta\right) \\ $$$${Hence},\:{the}\:{area}\:{of}\:{the}\:{other}\:{segment} \\ $$$${of}\:{the}\:{circle}\:{is}\:{s}_{\mathrm{2}} =\pi{r}^{\mathrm{2}} −{s}_{\mathrm{1}} . \\ $$$${s}_{\mathrm{2}} =\mathrm{4}\pi{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \left(\theta−{sin}\theta\right) \\ $$$${s}_{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{2}\pi+{sin}\theta−\theta\right) \\ $$$${Therefore},\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }=\frac{\theta−{sin}\theta}{\mathrm{2}\pi+{sin}\theta−\theta}. \\ $$$${Returning}\:{to}\:\bigtriangleup{AQB},\:{we}\:{can}\:{yield} \\ $$$${a}\:{right}−{angled}\:{triangle}\:\bigtriangleup{AQD} \\ $$$${with}\:\angle{AQD}=\frac{\mathrm{1}}{\mathrm{2}}\angle{AQB}=\frac{\theta}{\mathrm{2}} \\ $$$${and}\:\angle{QDA}=\frac{\pi}{\mathrm{2}}. \\ $$$${We}\:{then}\:{have}\:{cos}\frac{\theta}{\mathrm{2}}=\frac{{QD}}{{AQ}}=\frac{{a}}{\mathrm{2}{a}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\theta}{\mathrm{2}}=\frac{\pi}{\mathrm{3}}\Rightarrow\theta=\frac{\mathrm{2}\pi}{\mathrm{3}}. \\ $$$$\therefore\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }=\frac{\frac{\mathrm{2}\pi}{\mathrm{3}}−{sin}\frac{\mathrm{2}\pi}{\mathrm{3}}}{\mathrm{2}\pi+{sin}\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\mathrm{2}\pi}{\mathrm{3}}}=\frac{\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{2}\pi+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }=\frac{\mathrm{4}\pi−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}\pi+\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 21/Dec/15

′′....A diameter of the circle normally  cuts a chord AB on the circle_(−)  such that  d is partitioned in the ratio 1:3....′′  What do you mean by this?

$$''....{A}\:{diameter}\:{of}\:{the}\:{circle}\:{normally} \\ $$$${cuts}\:{a}\:{chord}\:{AB}\:\underset{−} {{on}\:{the}\:{circle}}\:{such}\:{that} \\ $$$${d}\:{is}\:{partitioned}\:{in}\:{the}\:{ratio}\:\mathrm{1}:\mathrm{3}....'' \\ $$$${What}\:{do}\:{you}\:{mean}\:{by}\:{this}? \\ $$

Commented by Yozzii last updated on 21/Dec/15

normally⇒perpendicularly (in math terms)

$${normally}\Rightarrow{perpendicularly}\:\left({in}\:{math}\:{terms}\right) \\ $$

Commented by Yozzii last updated on 21/Dec/15

  The diameter cuts the chord at 90°  with the chord divinding the length of  the diameter in the ratio 1:3.

$$ \\ $$$${The}\:{diameter}\:{cuts}\:{the}\:{chord}\:{at}\:\mathrm{90}° \\ $$$${with}\:{the}\:{chord}\:{divinding}\:{the}\:{length}\:{of} \\ $$$${the}\:{diameter}\:{in}\:{the}\:{ratio}\:\mathrm{1}:\mathrm{3}. \\ $$

Commented by Yozzii last updated on 21/Dec/15

The question hadn′t specified whether  s_1 >s_2  or s_2 >s_1  so truly (s_1 /s_2 ) can take  two values that are reciprocals  of each other.

$${The}\:{question}\:{hadn}'{t}\:{specified}\:{whether} \\ $$$${s}_{\mathrm{1}} >{s}_{\mathrm{2}} \:{or}\:{s}_{\mathrm{2}} >{s}_{\mathrm{1}} \:{so}\:{truly}\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }\:{can}\:{take} \\ $$$${two}\:{values}\:{that}\:{are}\:{reciprocals} \\ $$$${of}\:{each}\:{other}. \\ $$

Commented by Rasheed Soomro last updated on 22/Dec/15

Thanks! Misunderstanding in understanding  language.I got ′normally′  in normal language,  not as mathematical term.

$${Thanks}!\:{Misunderstanding}\:{in}\:{understanding} \\ $$$${language}.{I}\:{got}\:'\boldsymbol{{normally}}'\:\:{in}\:{normal}\:{language}, \\ $$$${not}\:{as}\:{mathematical}\:{term}. \\ $$

Commented by Rasheed Soomro last updated on 21/Dec/15

G^(O^(  V) O) D Approach!

$$\mathcal{G}^{\mathcal{O}^{\:\:{V}} \mathcal{O}} \mathcal{D}\:\mathcal{A}{pproach}! \\ $$

Answered by Yozzii last updated on 21/Dec/15

(Integral calculus method based on  initial information from first answer.)    Define a circle C with equation   x^2 +y^2 =4a^2 , a>0.  For C ,let s_1  be the area between the   chord AB and the arc AB. We can let  the diameter normal to AB be concurrent  with the x−axis.  ∴ s_1 =∫_a ^(2a) ydx  s_1 =∫_a ^(2a) (√(4a^2 −x^2 ))dx  Let x=2asinθ⇒dx=2acosθdθ  and (√(4a^2 −x^2 ))=2acosθ.  At x=a⇒sinθ=1/2⇒θ=(π/6).  At x=2a⇒sinθ=1⇒θ=π/2.  ∴s_1 =2∫_(π/6) ^(π/2) 4a^2 cos^2 θdθ  s_1 =4a^2 ∫_(π/6) ^(π/2) (1+cos2θ)dθ  s_1 =4a^2 (θ+(1/2)sin2θ)∣_(π/6) ^(π/2)   s_1 =4a^2 ((π/2)−(π/6)+(1/2)sinπ−(1/2)sin(π/3))  s_1 =4a^2 ((π/3)−((√3)/4))  s_1 =(a^2 /3)(4π−3(√3))  The area s_2  of the other segment is   given by s_2 =πr^2 −s_1 .  ∴ s_2 =4πa^2 −4a^2 ((4π−3(√3))/(12))  s_2 =4a^2 (π−((4π−3(√3))/(12)))  s_2 =4a^2 (((12π−4π+3(√3))/(12)))  s_2 =(a^2 /3)(8π+3(√3))  ∴ (s_1 /s_2 )=((4π−3(√3))/(8π+3(√3)))

$$\left({Integral}\:{calculus}\:{method}\:{based}\:{on}\right. \\ $$$$\left.{initial}\:{information}\:{from}\:{first}\:{answer}.\right) \\ $$$$ \\ $$$${Define}\:{a}\:{circle}\:{C}\:{with}\:{equation}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} ,\:{a}>\mathrm{0}. \\ $$$${For}\:{C}\:,{let}\:{s}_{\mathrm{1}} \:{be}\:{the}\:{area}\:{between}\:{the}\: \\ $$$${chord}\:{AB}\:{and}\:{the}\:{arc}\:{AB}.\:{We}\:{can}\:{let} \\ $$$${the}\:{diameter}\:{normal}\:{to}\:{AB}\:{be}\:{concurrent} \\ $$$${with}\:{the}\:{x}−{axis}. \\ $$$$\therefore\:{s}_{\mathrm{1}} =\int_{{a}} ^{\mathrm{2}{a}} {ydx} \\ $$$${s}_{\mathrm{1}} =\int_{{a}} ^{\mathrm{2}{a}} \sqrt{\mathrm{4}{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx} \\ $$$${Let}\:{x}=\mathrm{2}{asin}\theta\Rightarrow{dx}=\mathrm{2}{acos}\theta{d}\theta \\ $$$${and}\:\sqrt{\mathrm{4}{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\mathrm{2}{acos}\theta. \\ $$$${At}\:{x}={a}\Rightarrow{sin}\theta=\mathrm{1}/\mathrm{2}\Rightarrow\theta=\frac{\pi}{\mathrm{6}}. \\ $$$${At}\:{x}=\mathrm{2}{a}\Rightarrow{sin}\theta=\mathrm{1}\Rightarrow\theta=\pi/\mathrm{2}. \\ $$$$\therefore{s}_{\mathrm{1}} =\mathrm{2}\int_{\pi/\mathrm{6}} ^{\pi/\mathrm{2}} \mathrm{4}{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta{d}\theta \\ $$$${s}_{\mathrm{1}} =\mathrm{4}{a}^{\mathrm{2}} \int_{\pi/\mathrm{6}} ^{\pi/\mathrm{2}} \left(\mathrm{1}+{cos}\mathrm{2}\theta\right){d}\theta \\ $$$${s}_{\mathrm{1}} =\mathrm{4}{a}^{\mathrm{2}} \left(\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}\theta\right)\mid_{\pi/\mathrm{6}} ^{\pi/\mathrm{2}} \\ $$$${s}_{\mathrm{1}} =\mathrm{4}{a}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\pi−\frac{\mathrm{1}}{\mathrm{2}}{sin}\frac{\pi}{\mathrm{3}}\right) \\ $$$${s}_{\mathrm{1}} =\mathrm{4}{a}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$$${s}_{\mathrm{1}} =\frac{{a}^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{4}\pi−\mathrm{3}\sqrt{\mathrm{3}}\right) \\ $$$${The}\:{area}\:{s}_{\mathrm{2}} \:{of}\:{the}\:{other}\:{segment}\:{is}\: \\ $$$${given}\:{by}\:{s}_{\mathrm{2}} =\pi{r}^{\mathrm{2}} −{s}_{\mathrm{1}} . \\ $$$$\therefore\:{s}_{\mathrm{2}} =\mathrm{4}\pi{a}^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} \frac{\mathrm{4}\pi−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{12}} \\ $$$${s}_{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \left(\pi−\frac{\mathrm{4}\pi−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{12}}\right) \\ $$$${s}_{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \left(\frac{\mathrm{12}\pi−\mathrm{4}\pi+\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{12}}\right) \\ $$$${s}_{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{8}\pi+\mathrm{3}\sqrt{\mathrm{3}}\right) \\ $$$$\therefore\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }=\frac{\mathrm{4}\pi−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}\pi+\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 21/Dec/15

 AnOther     G        D^( O^( V) O)    Approach!

$$\:\mathbb{A}\mathrm{n}\mathbb{O}\boldsymbol{\mathrm{ther}} \\ $$$$\:\:\:\overset{\:\mathcal{O}^{\:\mathbb{V}} \mathcal{O}} {\mathcal{G}\:\:\:\:\:\:\:\:\mathcal{D}}\: \\ $$$$\mathrm{Approach}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com