Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 38092 by ajfour last updated on 21/Jun/18

Commented by ajfour last updated on 22/Jun/18

The circle touches x=0 , y=0 ,  and the ellipse   (x^2 /a^2 )+(y^2 /b^2 )=1 , in the  manner shown; find its radius R  in terms of a and b.

Thecircletouchesx=0,y=0,andtheellipsex2a2+y2b2=1,inthemannershown;finditsradiusRintermsofaandb.

Commented by MJS last updated on 22/Jun/18

there are 2 circles: the one you show and a  small one within the ellipse.  I′m afraid this leads to polynomes of 4^(th)  or  even 6^(th)  degree...

thereare2circles:theoneyoushowandasmallonewithintheellipse.Imafraidthisleadstopolynomesof4thoreven6thdegree...

Commented by MJS last updated on 22/Jun/18

after not succeeding from the front I tried  it from the rear:    start with the common tangent in the  intersection point P  t: y=kx+d; k<0; d>0  P∈t: P= ((p),((kp+d)) )  n⊥t; P∈n  n: y=−(1/k)x+d+(((k^2 +1)p)/k)  the centers of the circles lie on  m: y=x  m∩n  x=−(1/k)x+d+(((k^2 +1)p)/k) ⇒ x=((dk+(k^2 +1)p)/(k+1))  C= ((((dk+(k^2 +1)p)/(k+1))),(((dk+(k^2 +1)p)/(k+1))) )  ∣CP∣=r=x  (((dk+(k^2 +1)p)/(k+1))−p)^2 +(((dk+(k^2 +1)p)/(k+1))−kp−d)^2 −(((dk+(k^2 +1)p)/(k+1)))^2 =0  ⇒  { ((p_1 =(d/(2k))(−1−((k+1)/(√(k^2 +1)))))),((p_2 =(d/(2k))(−1+((k+1)/(√(k^2 +1)))))) :}  ⇒  { ((P_1 = ((((d/(2k))(−1−((k+1)/(√(k^2 +1)))))),(((d/2)(1−((k+1)/(√(k^2 +1)))))) ))),((P_2 = ((((d/(2k))(−1+((k+1)/(√(k^2 +1)))))),(((d/2)(1+((k+1)/(√(k^2 +1)))))) ))) :}  ⇒  { ((C_1 = ((r_1 ),(r_1 ) ); r_1 =(d/(2k))(k−1−(√(k^2 +1))))),((C_2 = ((r_2 ),(r_2 ) ); r_2 =(d/(2k))(k−1+(√(k^2 +1))))) :}    now we can find 2 ellipses for given k and d  t_P ^(ell) =−((bp)/(a(√(a^2 −p^2 ))))x+((ab)/(√(a^2 −p^2 ))) = kx+d  ⇒ k=−((bp)/(a(√(a^2 −p^2 )))); d=((ab)/(√(a^2 −p^2 )))  ⇒ a=(√(dp/(−k))); b=(√(d(d+kp)))

afternotsucceedingfromthefrontItrieditfromtherear:startwiththecommontangentintheintersectionpointPt:y=kx+d;k<0;d>0Pt:P=(pkp+d)nt;Pnn:y=1kx+d+(k2+1)pkthecentersofthecircleslieonm:y=xmnx=1kx+d+(k2+1)pkx=dk+(k2+1)pk+1C=(dk+(k2+1)pk+1dk+(k2+1)pk+1)CP∣=r=x(dk+(k2+1)pk+1p)2+(dk+(k2+1)pk+1kpd)2(dk+(k2+1)pk+1)2=0{p1=d2k(1k+1k2+1)p2=d2k(1+k+1k2+1){P1=(d2k(1k+1k2+1)d2(1k+1k2+1))P2=(d2k(1+k+1k2+1)d2(1+k+1k2+1)){C1=(r1r1);r1=d2k(k1k2+1)C2=(r2r2);r2=d2k(k1+k2+1)nowwecanfind2ellipsesforgivenkanddtPell=bpaa2p2x+aba2p2=kx+dk=bpaa2p2;d=aba2p2a=dpk;b=d(d+kp)

Commented by ajfour last updated on 23/Jun/18

Excellent! Sir.  aint your expressions for p_1 , p_2    a bit simpler; i dont get the same..

Excellent!Sir.aintyourexpressionsforp1,p2abitsimpler;idontgetthesame..

Commented by MJS last updated on 25/Jun/18

(((dk+(k^2 +1)p)/(k+1))−p)^2 +(((dk+(k^2 +1)p)/(k+1))−kp−d)^2 −(((dk+(k^2 +1)p)/(k+1)))^2 =0  (((dk+k(k−1)p)^2 +(−d−(k−1)p)^2 −(dk+(k^2 +1)p)^2 )/((k+1)^2 ))=0  k^2 (k−1)^2 p^2 +2dk^2 (k−1)p+d^2 k^2 +       +(k−1)^2 p^2 +2d(k−1)p+d^2 −            −((k^2 +1)^2 p^2 +2dk(k^2 +1)p+d^2 k^2 )=0    −2k(k^2 +1)p^2 −2d(k^2 +1)p+d^2 =0  p^2 +(d/k)p−(d^2 /(2k(k^2 +1)))=0  p=−(d/(2k))±(√((d^2 /(4k^2 ))+(d^2 /(2k(k^2 +1)))))=  =−(d/(2k))±(√((d^2 (k^2 +1)+2d^2 k)/(4k^2 (k^2 +1))))=  =−(d/(2k))±(d/(2k))(√((k^2 +1+2k)/(k^2 +1)))=  =(d/(2k))(−1±((k+1)/(√(k^2 +1))))

(dk+(k2+1)pk+1p)2+(dk+(k2+1)pk+1kpd)2(dk+(k2+1)pk+1)2=0(dk+k(k1)p)2+(d(k1)p)2(dk+(k2+1)p)2(k+1)2=0k2(k1)2p2+2dk2(k1)p+d2k2++(k1)2p2+2d(k1)p+d2((k2+1)2p2+2dk(k2+1)p+d2k2)=02k(k2+1)p22d(k2+1)p+d2=0p2+dkpd22k(k2+1)=0p=d2k±d24k2+d22k(k2+1)==d2k±d2(k2+1)+2d2k4k2(k2+1)==d2k±d2kk2+1+2kk2+1==d2k(1±k+1k2+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com