Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 38094 by ajfour last updated on 21/Jun/18

Commented by ajfour last updated on 21/Jun/18

A rod hangs from ceiling by two  two strings of length a, b from  points on ceiling separated by  distance d. The rod has length l.  Find 𝛉.

$${A}\:{rod}\:{hangs}\:{from}\:{ceiling}\:{by}\:{two} \\ $$$${two}\:{strings}\:{of}\:{length}\:\boldsymbol{{a}},\:\boldsymbol{{b}}\:{from} \\ $$$${points}\:{on}\:{ceiling}\:{separated}\:{by} \\ $$$${distance}\:\boldsymbol{{d}}.\:{The}\:{rod}\:{has}\:{length}\:\boldsymbol{{l}}. \\ $$$$\boldsymbol{{F}}{ind}\:\boldsymbol{\theta}. \\ $$

Commented by MrW3 last updated on 23/Jun/18

Image that we could extend the strings  into the ceiling, then they would meet  at a point, let′s say point O.  Point O must lie on the same vertical  line as the COM of the rod, let′s say  point M.  So in a first step I would try to solve  the easier case where the rod hangs on  the point O through two strings with  lengthes l_1  and l_2 .  We will also have  this case if d=0.

$${Image}\:{that}\:{we}\:{could}\:{extend}\:{the}\:{strings} \\ $$$${into}\:{the}\:{ceiling},\:{then}\:{they}\:{would}\:{meet} \\ $$$${at}\:{a}\:{point},\:{let}'{s}\:{say}\:{point}\:{O}. \\ $$$${Point}\:{O}\:{must}\:{lie}\:{on}\:{the}\:{same}\:{vertical} \\ $$$${line}\:{as}\:{the}\:{COM}\:{of}\:{the}\:{rod},\:{let}'{s}\:{say} \\ $$$${point}\:{M}. \\ $$$${So}\:{in}\:{a}\:{first}\:{step}\:{I}\:{would}\:{try}\:{to}\:{solve} \\ $$$${the}\:{easier}\:{case}\:{where}\:{the}\:{rod}\:{hangs}\:{on} \\ $$$${the}\:{point}\:{O}\:{through}\:{two}\:{strings}\:{with} \\ $$$${lengthes}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} .\:\:{We}\:{will}\:{also}\:{have} \\ $$$${this}\:{case}\:{if}\:{d}=\mathrm{0}. \\ $$

Commented by MrW3 last updated on 23/Jun/18

Commented by MrW3 last updated on 23/Jun/18

let l_1 =OA, l_2 =OB  we know OM is a median of the triangle  OAB and  OM=(1/2)(√(2(l_1 ^2 +l_2 ^2 )−l^2 ))  cos∠OMB=((−l_2 ^2 +OM^2 +MB^2 )/(2×OM×MB))  since θ=90°−∠OMB  ⇒sin θ=((−l_2 ^2 +OM^2 +MB^2 )/(2×OM×MB))  ⇒sin θ=((−l_2 ^2 +((2(l_1 ^2 +l_2 ^2 )−l^2 )/4)+((l/2))^2 )/(2×((√(2(l_1 ^2 +l_2 ^2 )−l^2 ))/2)×(l/2)))  ⇒sin θ=((−4l_2 ^2 +2(l_1 ^2 +l_2 ^2 )−l^2 +l^2 )/(2l(√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))  ⇒sin θ=((l_1 ^2 −l_2 ^2 )/(l(√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))  ⇒θ=sin^(−1) ((l_1 ^2 −l_2 ^2 )/(l(√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))  cos α=((OA^2 +OM^2 −AM^2 )/(2×OA×OM))  cos α=((l_1 ^2 +((2(l_1 ^2 +l_2 ^2 )−l^2 )/4)−((l/2))^2 )/(2×l_1 ×((√(2(l_1 ^2 +l_2 ^2 )−l^2 ))/2)))  cos α=((3l_1 ^2 +l_2 ^2 −l^2 )/(2l_1 (√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))  ⇒α=cos^(−1) ((3l_1 ^2 +l_2 ^2 −l^2 )/(2l_1 (√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))  ⇒β=cos^(−1) ((3l_2 ^2 +l_1 ^2 −l^2 )/(2l_2 (√(2(l_1 ^2 +l_2 ^2 )−l^2 ))))

$${let}\:{l}_{\mathrm{1}} ={OA},\:{l}_{\mathrm{2}} ={OB} \\ $$$${we}\:{know}\:{OM}\:{is}\:{a}\:{median}\:{of}\:{the}\:{triangle} \\ $$$${OAB}\:{and} \\ $$$${OM}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} } \\ $$$${cos}\angle{OMB}=\frac{−{l}_{\mathrm{2}} ^{\mathrm{2}} +{OM}^{\mathrm{2}} +{MB}^{\mathrm{2}} }{\mathrm{2}×{OM}×{MB}} \\ $$$${since}\:\theta=\mathrm{90}°−\angle{OMB} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{−{l}_{\mathrm{2}} ^{\mathrm{2}} +{OM}^{\mathrm{2}} +{MB}^{\mathrm{2}} }{\mathrm{2}×{OM}×{MB}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{−{l}_{\mathrm{2}} ^{\mathrm{2}} +\frac{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }{\mathrm{4}}+\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}×\frac{\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }}{\mathrm{2}}×\frac{{l}}{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{−\mathrm{4}{l}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} +{l}^{\mathrm{2}} }{\mathrm{2}{l}\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{{l}_{\mathrm{1}} ^{\mathrm{2}} −{l}_{\mathrm{2}} ^{\mathrm{2}} }{{l}\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{{l}_{\mathrm{1}} ^{\mathrm{2}} −{l}_{\mathrm{2}} ^{\mathrm{2}} }{{l}\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\alpha=\frac{{OA}^{\mathrm{2}} +{OM}^{\mathrm{2}} −{AM}^{\mathrm{2}} }{\mathrm{2}×{OA}×{OM}} \\ $$$$\mathrm{cos}\:\alpha=\frac{{l}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }{\mathrm{4}}−\left(\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}×{l}_{\mathrm{1}} ×\frac{\sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }}{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{3}{l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} −{l}^{\mathrm{2}} }{\mathrm{2}{l}_{\mathrm{1}} \sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{3}{l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} −{l}^{\mathrm{2}} }{\mathrm{2}{l}_{\mathrm{1}} \sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$$$\Rightarrow\beta=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{3}{l}_{\mathrm{2}} ^{\mathrm{2}} +{l}_{\mathrm{1}} ^{\mathrm{2}} −{l}^{\mathrm{2}} }{\mathrm{2}{l}_{\mathrm{2}} \sqrt{\mathrm{2}\left({l}_{\mathrm{1}} ^{\mathrm{2}} +{l}_{\mathrm{2}} ^{\mathrm{2}} \right)−{l}^{\mathrm{2}} }} \\ $$

Commented by ajfour last updated on 23/Jun/18

Brilliant thought sir,   but  l_1 , l_2  are themselves  dependent on α, β ; Sir..

$${Brilliant}\:{thought}\:{sir}, \\ $$$$\:{but}\:\:{l}_{\mathrm{1}} ,\:{l}_{\mathrm{2}} \:{are}\:{themselves} \\ $$$${dependent}\:{on}\:\alpha,\:\beta\:;\:{Sir}.. \\ $$

Commented by MrW3 last updated on 23/Jun/18

yes.   the problem is still not easy to solve.  one can not get a closed formula for  case d≠0 to calculate θ directly.

$${yes}.\: \\ $$$${the}\:{problem}\:{is}\:{still}\:{not}\:{easy}\:{to}\:{solve}. \\ $$$${one}\:{can}\:{not}\:{get}\:{a}\:{closed}\:{formula}\:{for} \\ $$$${case}\:{d}\neq\mathrm{0}\:{to}\:{calculate}\:\theta\:{directly}.\: \\ $$

Commented by ajfour last updated on 23/Jun/18

Thank you anyway Sir.

$${Thank}\:{you}\:{anyway}\:{Sir}. \\ $$

Commented by MrW3 last updated on 24/Jun/18

I don′t think it′s possible to find a  closed formula to calculate the angle  θ directly. If we know the angle ∠BAC,  let′s say ϕ, then we can also find θ.   I think we can get a single equation,  though a complicated one, for ϕ,  something like F(ϕ,a,b,d,l)=0, not  in form of ϕ=F(a,b,d,l).

$${I}\:{don}'{t}\:{think}\:{it}'{s}\:{possible}\:{to}\:{find}\:{a} \\ $$$${closed}\:{formula}\:{to}\:{calculate}\:{the}\:{angle} \\ $$$$\theta\:{directly}.\:{If}\:{we}\:{know}\:{the}\:{angle}\:\angle{BAC}, \\ $$$${let}'{s}\:{say}\:\varphi,\:{then}\:{we}\:{can}\:{also}\:{find}\:\theta.\: \\ $$$${I}\:{think}\:{we}\:{can}\:{get}\:{a}\:{single}\:{equation}, \\ $$$${though}\:{a}\:{complicated}\:{one},\:{for}\:\varphi, \\ $$$${something}\:{like}\:{F}\left(\varphi,{a},{b},{d},{l}\right)=\mathrm{0},\:{not} \\ $$$${in}\:{form}\:{of}\:\varphi={F}\left({a},{b},{d},{l}\right). \\ $$

Commented by ajfour last updated on 24/Jun/18

Commented by ajfour last updated on 24/Jun/18

{  d_1 +acos α=(l/2)cos θ    }×tan 𝛂   {d_2 +bcos β =(l/2)cos θ    }×tan β     Since   d_1 tan α = d_2 tan β =h  asin α−bsin β =(l/2)cos θ(tan α−tan β)  Now   asin α−bsin β = lsin θ  _____________________  ⇒    tan 𝛂−tan 𝛃 = 2tan 𝛉  _____________________  Considering the △ with sides  a, b, and ρ we have      (ρ/(sin (α+β)))=(a/(sin (β+δ)))=(b/(sin (α−δ)))  α=sin^(−1) [((bsin (α+β))/ρ)]+δ  β=sin^(−1) [((asin (α+β))/ρ)]−δ    where (as can easily be seen)    𝛒^2 =(lcos 𝛉−d)^2 +l^2 sin^2 𝛉     tan 𝛅 = ((lsin 𝛉)/(lcos 𝛉−d))  cos (𝛂+𝛃)=((a^2 +b^2 −𝛒^2 )/(2ab))  sin (𝛂+𝛃)=(√(1−[((a^2 +b^2 −𝛒^2 )/(2ab))]^2 ))   ρ^2 −b^2 sin^2 (α+β)=ρ^2 −b^2 +(((a^2 +b^2 −ρ^2 )^2 )/(4a^2 ))        =((4a^2 (ρ^2 −b^2 )+[a^2 −(ρ^2 −b^2 )]^2 )/(4a^2 ))      =[((a^2 +ρ^2 −b^2 )/(2a))]^2   ⇒ 2absin (α+β)=(√(4a^2 b^2 −(a^2 +b^2 −ρ^2 )^2 ))  ⇒bsin (α+β)=((√([(a+b)^2 −ρ^2 ][ρ^2 −(a−b)^2 ]))/(2a))  ________________________  2tan 𝛉 = tan α−tan β      =tan {sin^(−1) [((bsin (α+β))/ρ)]+δ}          −tan {sin^(−1) [((asin (α+β))/ρ)]−δ}    =tan {tan^(−1) (((bsin (α+β))/(√(ρ^2 −b^2 sin^2 (α+β)))))+𝛅}        −tan {tan^(−1) (((asin (α+β))/(√(ρ^2 −a^2 sin^2 (α+β))))−𝛅}  __________________________    2tan θ     =tan [tan^(−1) ((√([(a+b)^2 −ρ^2 ][ρ^2 −(a−b)^2 ]))/(a^2 +ρ^2 −b^2 ))+δ]      −tan [tan^(−1) ((√([(a+b)^2 −ρ^2 ][ρ^2 −(a−b)^2 ]))/(b^2 +ρ^2 −a^2 ))−δ]      ___________________________ .

$$\left\{\:\:{d}_{\mathrm{1}} +{a}\mathrm{cos}\:\alpha=\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\:\:\:\:\right\}×\mathrm{tan}\:\boldsymbol{\alpha} \\ $$$$\:\left\{{d}_{\mathrm{2}} +{b}\mathrm{cos}\:\beta\:=\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\:\:\:\:\right\}×\mathrm{tan}\:\beta \\ $$$$\:\:\:{Since}\:\:\:{d}_{\mathrm{1}} \mathrm{tan}\:\alpha\:=\:{d}_{\mathrm{2}} \mathrm{tan}\:\beta\:=\boldsymbol{{h}} \\ $$$${a}\mathrm{sin}\:\alpha−{b}\mathrm{sin}\:\beta\:=\frac{{l}}{\mathrm{2}}\mathrm{cos}\:\theta\left(\mathrm{tan}\:\alpha−\mathrm{tan}\:\beta\right) \\ $$$${Now}\:\:\:{a}\mathrm{sin}\:\alpha−{b}\mathrm{sin}\:\beta\:=\:{l}\mathrm{sin}\:\theta \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\Rightarrow\:\:\:\:\mathrm{tan}\:\boldsymbol{\alpha}−\mathrm{tan}\:\boldsymbol{\beta}\:=\:\mathrm{2tan}\:\boldsymbol{\theta} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${Considering}\:{the}\:\bigtriangleup\:{with}\:{sides} \\ $$$${a},\:{b},\:{and}\:\rho\:{we}\:{have}\: \\ $$$$\:\:\:\frac{\rho}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\frac{{a}}{\mathrm{sin}\:\left(\beta+\delta\right)}=\frac{{b}}{\mathrm{sin}\:\left(\alpha−\delta\right)} \\ $$$$\alpha=\mathrm{sin}^{−\mathrm{1}} \left[\frac{{b}\mathrm{sin}\:\left(\alpha+\beta\right)}{\rho}\right]+\delta \\ $$$$\beta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{{a}\mathrm{sin}\:\left(\alpha+\beta\right)}{\rho}\right]−\delta \\ $$$$ \\ $$$${where}\:\left({as}\:{can}\:{easily}\:{be}\:{seen}\right) \\ $$$$\:\:\boldsymbol{\rho}^{\mathrm{2}} =\left(\boldsymbol{{l}}\mathrm{cos}\:\boldsymbol{\theta}−\boldsymbol{{d}}\right)^{\mathrm{2}} +\boldsymbol{{l}}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\theta} \\ $$$$\:\:\:\mathrm{tan}\:\boldsymbol{\delta}\:=\:\frac{\boldsymbol{{l}}\mathrm{sin}\:\boldsymbol{\theta}}{\boldsymbol{{l}}\mathrm{cos}\:\boldsymbol{\theta}−\boldsymbol{{d}}} \\ $$$$\mathrm{cos}\:\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\right)=\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{\rho}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{{ab}}} \\ $$$$\mathrm{sin}\:\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\right)=\sqrt{\mathrm{1}−\left[\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{\rho}^{\mathrm{2}} }{\mathrm{2}\boldsymbol{{ab}}}\right]^{\mathrm{2}} }\: \\ $$$$\rho^{\mathrm{2}} −{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\alpha+\beta\right)=\rho^{\mathrm{2}} −{b}^{\mathrm{2}} +\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\rho^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{4}{a}^{\mathrm{2}} \left(\rho^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\left[{a}^{\mathrm{2}} −\left(\rho^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\right]^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\left[\frac{{a}^{\mathrm{2}} +\rho^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{a}}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}{ab}\mathrm{sin}\:\left(\alpha+\beta\right)=\sqrt{\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\rho^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow{b}\mathrm{sin}\:\left(\alpha+\beta\right)=\frac{\sqrt{\left[\left({a}+{b}\right)^{\mathrm{2}} −\rho^{\mathrm{2}} \right]\left[\rho^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]}}{\mathrm{2}{a}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\mathrm{2tan}\:\boldsymbol{\theta}\:=\:\mathrm{tan}\:\alpha−\mathrm{tan}\:\beta \\ $$$$\:\:\:\:=\mathrm{tan}\:\left\{\mathrm{sin}^{−\mathrm{1}} \left[\frac{{b}\mathrm{sin}\:\left(\alpha+\beta\right)}{\rho}\right]+\delta\right\} \\ $$$$\:\:\:\:\:\:\:\:−\mathrm{tan}\:\left\{\mathrm{sin}^{−\mathrm{1}} \left[\frac{{a}\mathrm{sin}\:\left(\alpha+\beta\right)}{\rho}\right]−\delta\right\} \\ $$$$\:\:=\mathrm{tan}\:\left\{\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\rho^{\mathrm{2}} −{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\alpha+\beta\right)}}\right)+\boldsymbol{\delta}\right\} \\ $$$$\:\:\:\:\:\:−\mathrm{tan}\:\left\{\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}\mathrm{sin}\:\left(\alpha+\beta\right)}{\sqrt{\rho^{\mathrm{2}} −{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\alpha+\beta\right)}}−\boldsymbol{\delta}\right\}\right. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\mathrm{2tan}\:\theta\: \\ $$$$\:\:=\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\left[\left({a}+{b}\right)^{\mathrm{2}} −\rho^{\mathrm{2}} \right]\left[\rho^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]}}{{a}^{\mathrm{2}} +\rho^{\mathrm{2}} −{b}^{\mathrm{2}} }+\delta\right] \\ $$$$\:\:\:\:−\mathrm{tan}\:\left[\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\left[\left({a}+{b}\right)^{\mathrm{2}} −\rho^{\mathrm{2}} \right]\left[\rho^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]}}{{b}^{\mathrm{2}} +\rho^{\mathrm{2}} −{a}^{\mathrm{2}} }−\delta\right]\: \\ $$$$\:\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:. \\ $$

Commented by MrW3 last updated on 24/Jun/18

this eqn. is correct sir. I checked  different values for a,b,d and l. and  the solution is right.  wonderful working!

$${this}\:{eqn}.\:{is}\:{correct}\:{sir}.\:{I}\:{checked} \\ $$$${different}\:{values}\:{for}\:{a},{b},{d}\:{and}\:{l}.\:{and} \\ $$$${the}\:{solution}\:{is}\:{right}. \\ $$$${wonderful}\:{working}! \\ $$

Commented by ajfour last updated on 25/Jun/18

Thanks you Sir!

$${Thanks}\:{you}\:{Sir}! \\ $$

Answered by ajfour last updated on 24/Jun/18

2tan θ   = tan {tan^(−1) [((√([(a+b)^2 −ρ^2 ][ρ^2 −(a−b)^2 ]))/(a^2 +ρ^2 −b^2 ))]+δ}     −tan { tan^(−1) [((√([(a+b)^2 −ρ^2 ][ρ^2 −(a−b)^2 ]))/(b^2 +ρ^2 −a^2 ))]−δ}  where            𝛒^2 = l^2 sin^2 𝛉+(lcos 𝛉−d)^2   and  𝛅 = tan^(−1) (((lsin 𝛉)/(lcos 𝛉−d))) .

$$\mathrm{2tan}\:\theta \\ $$$$\:=\:{tan}\:\left\{\mathrm{tan}^{−\mathrm{1}} \left[\frac{\sqrt{\left[\left({a}+{b}\right)^{\mathrm{2}} −\rho^{\mathrm{2}} \right]\left[\rho^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]}}{{a}^{\mathrm{2}} +\rho^{\mathrm{2}} −{b}^{\mathrm{2}} }\right]+\delta\right\} \\ $$$$\:\:\:−{tan}\:\left\{\:\mathrm{tan}^{−\mathrm{1}} \left[\frac{\sqrt{\left[\left({a}+{b}\right)^{\mathrm{2}} −\rho^{\mathrm{2}} \right]\left[\rho^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]}}{{b}^{\mathrm{2}} +\rho^{\mathrm{2}} −{a}^{\mathrm{2}} }\right]−\delta\right\} \\ $$$${where} \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\rho}^{\mathrm{2}} =\:\boldsymbol{{l}}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\theta}+\left(\boldsymbol{{l}}\mathrm{cos}\:\boldsymbol{\theta}−\boldsymbol{{d}}\right)^{\mathrm{2}} \\ $$$${and}\:\:\boldsymbol{\delta}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\boldsymbol{{l}}\mathrm{sin}\:\boldsymbol{\theta}}{\boldsymbol{{l}}\mathrm{cos}\:\boldsymbol{\theta}−\boldsymbol{{d}}}\right)\:. \\ $$

Commented by ajfour last updated on 24/Jun/18

To proceed beyond this , isn′t  possible for me. This is all i  could arrive at, but ∠BAC  or/and  ∠ABD is/are eliminated, eventually.

$${To}\:{proceed}\:{beyond}\:{this}\:,\:{isn}'{t} \\ $$$${possible}\:{for}\:{me}.\:{This}\:{is}\:{all}\:{i} \\ $$$${could}\:{arrive}\:{at},\:{but}\:\angle{BAC}\:\:{or}/{and} \\ $$$$\angle{ABD}\:{is}/{are}\:{eliminated},\:{eventually}. \\ $$

Commented by MrW3 last updated on 24/Jun/18

That′s great sir! You have at the end  one single equation with only one  unknown. The eqn. is even more simple  than I ′ve expected.

$${That}'{s}\:{great}\:{sir}!\:{You}\:{have}\:{at}\:{the}\:{end} \\ $$$${one}\:{single}\:{equation}\:{with}\:{only}\:{one} \\ $$$${unknown}.\:{The}\:{eqn}.\:{is}\:{even}\:{more}\:{simple} \\ $$$${than}\:{I}\:'{ve}\:{expected}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com