Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38100 by maxmathsup by imad last updated on 21/Jun/18

let A_n = ∫_0 ^n (x−[x])^2 dx  1) calculate A_n   2) find lim_(n→+∞)  A_n

letAn=0n(x[x])2dx1)calculateAn2)findlimn+An

Commented by prof Abdo imad last updated on 22/Jun/18

A_n = ∫_0 ^n ( x^2  −2x[x] +[x]^2 )dx  = ∫_0 ^n  x^2 dx  −2 ∫_0 ^n  x[x]dx  +∫_0 ^n  [x]^2 dx but  ∫_0 ^n  x[x]dx=Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  kx dx  =Σ_(k=0) ^(n−1)  k ( (((k+1)^2 )/2) −(k^2 /2))  =Σ_(k=0) ^(n−1)  k((k^2  +2k +1−k^2 )/2)  =Σ_(k=0) ^(n−1)  k( k +(1/2))=Σ_(k=0) ^(n−1)  k^2   +(1/2)Σ_(k=0) ^(n−1)  k  (((n−1)(n−1+1)(2(n−1)+1))/6) +(1/2)(((n−1)n)/2)    =((n(n−1)(2n−1))/6) +((n(n−1))/4)  =((n(n−1))/2){  ((2n−1)/3) +(1/2)}  =((n(n−1))/2){ ((4n−2 +3)/6)}  =((n(n−1)(4n+1))/(12)) also  ∫_0 ^n  x^2 dx =[(x^3 /3)]_0 ^n  = (n^3 /3)  ∫_0 ^n  [x]^2 dx =Σ_(k=0) ^(n−1)  ∫_k ^(k+1)  k^2  dx  =Σ_(k=0) ^(n−1)  k^2  =((n(n−1)(2n−1))/6) ⇒  A_n  = (n^3 /3)   −2 ((n(n−1)(4n+1))/(12))  +((n(n−1)(4n+1))/6)  A_n  =(n^3 /3)  2) lim_(n→+∞)  A_n =+∞

An=0n(x22x[x]+[x]2)dx=0nx2dx20nx[x]dx+0n[x]2dxbut0nx[x]dx=k=0n1kk+1kxdx=k=0n1k((k+1)22k22)=k=0n1kk2+2k+1k22=k=0n1k(k+12)=k=0n1k2+12k=0n1k(n1)(n1+1)(2(n1)+1)6+12(n1)n2=n(n1)(2n1)6+n(n1)4=n(n1)2{2n13+12}=n(n1)2{4n2+36}=n(n1)(4n+1)12also0nx2dx=[x33]0n=n330n[x]2dx=k=0n1kk+1k2dx=k=0n1k2=n(n1)(2n1)6An=n332n(n1)(4n+1)12+n(n1)(4n+1)6An=n332)limn+An=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com