Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38106 by maxmathsup by imad last updated on 21/Jun/18

calculate  ∫_0 ^(+∞)   e^(−3t) ln(1+e^t )dt .

$${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\mathrm{3}{t}} {ln}\left(\mathrm{1}+{e}^{{t}} \right){dt}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 08/Jul/18

by parts u^′  =e^(−3t)   and v=ln(1+e^t )   I  = [−(1/3)e^(−3t) ln(1+e^t )]_0 ^(+∞)  −∫_0 ^(+∞)  −(1/3)e^(−3t)   (e^t /(1+e^t ))dt  =((ln(2))/3) +(1/3) ∫_0 ^∞    (e^(−2t) /(1+e^t )) dt but changement  e^t  =x give   ∫_0 ^∞    (e^(−2t) /(1+e^t )) dt  = ∫_1 ^(+∞)    (1/(x^2 (1+x))) (dx/x)  = ∫_1 ^(+∞)   (dx/(x^3 (x+1))) let decompose  F(x)= (1/(x^3 (x+1)))  F(x) = (a/x) +(b/x^2 ) +(c/x^3 )  +(d/(x+1))  c =lim_(x→0)  x^3  F(x)=1  d=lim_(x→−1) (x+1)F(x) =−1 ⇒  F(x) =(a/x) +(b/x^2 ) +(1/x^3 ) −(1/(x+1))  lim_(x→+∞) xF(x) =0=a−1 ⇒a=1 ⇒  F(x) =(1/x) +(b/x^2 ) +(1/x^3 ) −(1/(x+1))  F(1)=(1/2) =1+b +1 −(1/2) =(3/2) +b  ⇒  b=−1 ⇒F(x) = (1/x) −(1/x^2 ) + (1/x^3 ) −(1/(x+1)) ⇒  ∫ F(x)dx =ln∣x∣ +(1/x)  −(1/(2x^2 )) −ln∣x+1∣ +c ⇒  ∫_1 ^(+∞)  F(x)dx =[ (1/x) −(1/(2x^2 ))]_1 ^(+∞)  +[ln∣(x/(x+1))∣]_1 ^(+∞)   =−1 +(1/2)  −ln((1/2))=−(1/2) +ln(2) ⇒  I  =((ln(2))/3)  +(1/3)(−(1/2) +ln(2))  =(2/3)ln(2) −(1/6) .

$${by}\:{parts}\:{u}^{'} \:={e}^{−\mathrm{3}{t}} \:\:{and}\:{v}={ln}\left(\mathrm{1}+{e}^{{t}} \right) \\ $$$$\:{I}\:\:=\:\left[−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−\mathrm{3}{t}} {ln}\left(\mathrm{1}+{e}^{{t}} \right)\right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{+\infty} \:−\frac{\mathrm{1}}{\mathrm{3}}{e}^{−\mathrm{3}{t}} \:\:\frac{{e}^{{t}} }{\mathrm{1}+{e}^{{t}} }{dt} \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{2}{t}} }{\mathrm{1}+{e}^{{t}} }\:{dt}\:{but}\:{changement} \\ $$$${e}^{{t}} \:={x}\:{give}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{2}{t}} }{\mathrm{1}+{e}^{{t}} }\:{dt}\:\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}\:\frac{{dx}}{{x}} \\ $$$$=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{3}} \left({x}+\mathrm{1}\right)}\:{let}\:{decompose} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} \left({x}+\mathrm{1}\right)} \\ $$$${F}\left({x}\right)\:=\:\frac{{a}}{{x}}\:+\frac{{b}}{{x}^{\mathrm{2}} }\:+\frac{{c}}{{x}^{\mathrm{3}} }\:\:+\frac{{d}}{{x}+\mathrm{1}} \\ $$$${c}\:={lim}_{{x}\rightarrow\mathrm{0}} \:{x}^{\mathrm{3}} \:{F}\left({x}\right)=\mathrm{1} \\ $$$${d}={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right){F}\left({x}\right)\:=−\mathrm{1}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{{a}}{{x}}\:+\frac{{b}}{{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)\:=\mathrm{0}={a}−\mathrm{1}\:\Rightarrow{a}=\mathrm{1}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{1}}{{x}}\:+\frac{{b}}{{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${F}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:=\mathrm{1}+{b}\:+\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\mathrm{3}}{\mathrm{2}}\:+{b}\:\:\Rightarrow \\ $$$${b}=−\mathrm{1}\:\Rightarrow{F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:−\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\Rightarrow \\ $$$$\int\:{F}\left({x}\right){dx}\:={ln}\mid{x}\mid\:+\frac{\mathrm{1}}{{x}}\:\:−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:−{ln}\mid{x}+\mathrm{1}\mid\:+{c}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:{F}\left({x}\right){dx}\:=\left[\:\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\right]_{\mathrm{1}} ^{+\infty} \:+\left[{ln}\mid\frac{{x}}{{x}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{+\infty} \\ $$$$=−\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\:−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${I}\:\:=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{3}}\:\:+\frac{\mathrm{1}}{\mathrm{3}}\left(−\frac{\mathrm{1}}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}{ln}\left(\mathrm{2}\right)\:−\frac{\mathrm{1}}{\mathrm{6}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com