Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38109 by maxmathsup by imad last updated on 21/Jun/18

1) find  S(x) = Σ_(n=1) ^∞   ((cos(nx))/n)  2) find  Σ_(n=1) ^∞   (((−1)^n )/n)

1)findS(x)=n=1cos(nx)n2)findn=1(1)nn

Commented by abdo.msup.com last updated on 30/Jun/18

we have S(x)=Re(Σ_(n=1) ^∞  (e^(inx) /n))=Re(w(x))  w(x)=Σ_(n=1) ^∞  (e^(inx) /n) ⇒w^′ (x)=i Σ_(n=1) ^∞  (e^(ix) )^n   =i e^(ix)  Σ_(n=1) ^∞  (e^(ix) )^(n−1) =ie^(ix) Σ_(n=0) ^∞  (e^(ix) )^n   =i(e^(ix) /(1−e^(ix) )) =i (e^(ix) /(1−cosx −isinx))  =i (e^(ix) /(2sin^2 ((x/2))−2isin((x/2))cos((x/2))))  = (i/(−2isin((x/2)))) (e^(ix) /e^(i(x/2)) )  =((−1)/(2 sin((x/2)))) e^(i(x/2))   = ((−1)/(2sin((x/2)))){ cos((x/2)) +i sin((x/2))}  =−(1/2)cotan((x/2)) −(i/2) ⇒  w(x)=−(1/2) ∫  ((cos((x/2)))/(sin((x/2)))) −((ix)/2) +c  =−ln∣sin((x/2))∣ −((ix)/2) +c   w(π) =−((iπ)/2) +c =Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  ⇒c=((iπ)/2) −ln(2) ⇒  w(x)=−ln∣ sin((x/2))∣−((ix)/2) +((iπ)/2) −ln(2)  S(x)=Re(w(x))=−ln∣sin((x/2))∣−ln(2).  also we get Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) .

wehaveS(x)=Re(n=1einxn)=Re(w(x))w(x)=n=1einxnw(x)=in=1(eix)n=ieixn=1(eix)n1=ieixn=0(eix)n=ieix1eix=ieix1cosxisinx=ieix2sin2(x2)2isin(x2)cos(x2)=i2isin(x2)eixeix2=12sin(x2)eix2=12sin(x2){cos(x2)+isin(x2)}=12cotan(x2)i2w(x)=12cos(x2)sin(x2)ix2+c=lnsin(x2)ix2+cw(π)=iπ2+c=n=1(1)nn=ln(2)c=iπ2ln(2)w(x)=lnsin(x2)ix2+iπ2ln(2)S(x)=Re(w(x))=lnsin(x2)ln(2).alsowegetn=1sin(nx)n=πx2.

Commented by abdo.msup.com last updated on 30/Jun/18

2) we have provef that  Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  =ln(1+x) if ∣x∣≤1 and  x≠−1 ⇒Σ_(n=1) ^∞  (((−1)^(n−1) )/n) =ln(2) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2).

2)wehaveprovefthatn=1(1)n1nxn=ln(1+x)ifx∣⩽1andx1n=1(1)n1n=ln(2)n=1(1)nn=ln(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com